[free_download_btn]
G Sarri, W Schumaker, A Di Piazza, K Poder, J M Cole, M Vargas, D Doria, S Kushel, B Dromey, G Grittani, L Gizzi, M E Dieckmann, A Green, V Chvykov, A Maksimchuk, V Yanovsky, Z H He, B X Hou, J A Nees, S Kar, Z Najmudin, A G R Thomas, C H Keitel, K Krushelnick, M Zepf
Plasma Phys. Control. Fusion 55, 124017, (2013)
Abstract
We report on recent experimental results concerning the generation of collimated (divergence of the order of a few mrad) ultra-relativistic positron beams using a fully optical system. The positron beams are generated exploiting a quantum- electrodynamic cascade initiated by the propagation of a laser-accelerated, ultra-relativistic electron beam through high-Z solid targets. As long as the target thickness is comparable to or smaller than the radiation length of the material, the divergence of the escaping positron beam is of the order of the inverse of its Lorentz factor. For thicker solid targets the divergence is seen to gradually increase, due to the increased number of fundamental steps in the cascade, but it is still kept of the order of few tens of mrad, depending on the spectral components in the beam. This high degree of collimation will be fundamental for further injection into plasma-wakefield afterburners.
(Some figures may appear in colour only in the online journal).
- Versione
- Scarica 0
- Dimensioni file 791.29 KB
- Conteggio file 1
- Data di Pubblicazione Gennaio 24, 2018
- Ultimo aggiornamento Gennaio 24, 2018