Latest results in laser-driven inertial confinement fusion

R. Betti

Dept. Mechanical Engineering and Physics & Astronomy Chief Scientist, Laboratory for Laser Energetics University of Rochester

Colloquium CNR-INO and Frascati Research Center December 17, 2021

In the US, inertial fusion via lasers is pursued through the direct and indirect drive approaches

Both direct and indirect drive ICF aim to achieve the conditions for ignition and propagating thermonuclear burn

Driving ICF targets with lasers is a very inefficient process

Examples: NIF Indirect Drive Laser energy = 2 MJ Shell final kinetic energy = 20-30 kJ Total efficiency = 1-1.5%

NIF Direct Drive Laser energy = 2 MJ Shell final kinetic energy = 80-100 kJ Total efficiency = 4-5%

Useful kinetic energy = $\frac{1}{2}M_{\text{unablated}}^{\text{shell}}V_{\text{imp}}^2$

Only a small fraction of the driver energy is converted into useful kinetic energy of the implosion

V = implosion velocity

Achieving ignition requires control of hydrodynamic and laser-plasma instabilities, lowmode asymmetries and the impact of engineering features

The different forms of the Lawson triple product are the main ignition metrics

The normalized Lawson parameter for ICF can be rewritten in terms of areal density, DT mass and neutron yields or ion temperature

• Rewrite Lawson for ICF using an imploding shell compressing a plasma rather than a static plasma:

$$\chi = \frac{P\tau}{\left[P\tau\right]_{ign}} \approx \left\langle \rho R_{g/cm^2} \right\rangle^{0.61} \left(\frac{0.12Yield_{16}}{M_{DTstag}^{mg}}\right)^{0.34}$$

Other forms of ignition criterion using hot spot areal density and temperature**

$$(\rho R)_{HotSpot} T_{ion} > 0.3 \times 5 \text{ g/cm}^2 \text{ keV}$$

**Atzeni and Caruso, Nuovo Cimento 1984 Kemp, Meyer-ter-vehn and Atzeni, PRL 2001 *R. Betti et al, PRL 2015 A. Christopherson et al, PoP (2018 and 2019) Lindl, PoP, 2018 Spears, PoP 2012 (ITFx)

7

A measure of the alpha heating level is the yield amplification from alpha heating which is strongly correlated to the no- α and with- α Lawson parameter

Ignition is the transition from rapidly growing alpha heating within the hot spot to burn propagation in the dense shell

UR 🔌

Critical ignition-relevant properties are inferred through nuclear and x-ray diagnostics

- 25

- 20 - 15

Laser indirect drive on NIF

Indirect-drive target

Current LLNL high performance targets use HDC ablators with optimized target specifications and laser pulse shapes (Hybrid-E)

Hurricane et al, Nature 2014

In terms of fusion yield, shot N210808 stands out as both qualitatively and quantitatively different from previous high performance implosions

(from P. Patel, APS-DPP 2021, available for download from meeting website)

An implosion with similar characteristics to shot N210808 can be reconstructed using 1D rad-hydro code LILAC and publicly disseminated data*

HDC DT ice DT gas

DT fuel peak implosion velocity ~ 390km/s DT mass = 210ug Remaining ablator mass HDC ~200ug Total kinetic energy ~ 25-30 kJ

ROCHESTER

Density and velocity at time of peak velocity from reconstruction -5E+06 15 DT **HDC** -1E+07 -1.5E+07 Density (g/cc) 10 -2E+07 -2E+07 -3E+07 -3.5E+07 -4F+07 00 50 100 150 200 250 300 Radius (um)

 From LLNL talks at APS-DPP meeting Callahan, Hurricane, Zystra, Kritcher, Patel et al

Comparison with the measured/inferred core conditions indicates the simulated implosion is a good surrogate

	Measured*	Simulated
Neutron Yield	4.9 ×10 ¹⁷	4.9×10 ¹⁷
Implosion Velocity (km/s)	390	382
T _{ion} (DT/DD) (keV)	9.8/8.2	8.6/8.3
Total Areal Density (g/cm ²)	0.57	0.55
Hot spot radius (µm)	77	73
Burn width (ps)	89	92
DT mass (µg)	210	210

* From LLNL talks at APS-DPP meeting

LILAC Reconstruction

Hot spot pressure is approximately doubled by alpha heating. Hot spot size about doubled by alpha heating indicating propagating burn.

Pressure at peak burn no-alphas: 256Gbar Pressure at peak burn with-alphas: 454Gbar

R_{17%} xray with-alphas=73um R_{17%} xray no-alphas=38um R_{17%} xray measured: 77um

LILAC Reconstruction

Te and Ti are approximately doubled by alpha heating. Doubling of temperature is another definition of ignition

Ti (DT) no-alpha=4.6 keV Ti (DT) with-alpha=8.6 keV Ti measured = 9.8 keV

LILAC Reconstruction

The reconstructed yield amplification from alpha heating is ~ 27x consistent with an ignited hot spot

All the ignition metrics based on the normalized Lawson parameter point to core conditions at or exceeding the ignition threshold*

Without accounting for HDC mass and ρR Use: Y=4.9e17, $\rho R_DT=0.57g/cm2$ and M_DT_total=0.214mg $\chi_{\alpha} = 2.72$ (ignition for $\chi_{\alpha} > 2$)

Accounting for (simulated) HDC mass and ρR Use: Y=4.9e17, $\rho R_{tot=0.57+0.21=0.78g/cm2}$, Total Mass=0.4mg χ_{α} =2.67 (ignition for χ_{α} >2)

Using hot spot size from x-rays (77um) $f_{\alpha} = 1.4$ (ignition for $f_{\alpha} > 1.4$)

Using hot spot size from neutron imaging (54um) $f_{\alpha} = 2.2$ (ignition for $f_{\alpha} > 1.4$)

Simple energetics also points to ignition in shot N210808 with a fusion yield consistent with a burnup fraction from the measured areal density and $T_{ion_{UR}}$

Simple energetics

Total kinetic energy ~ 25-30 kJ Fuel kinetic energy ~ 16-20 kJ pdV work on hot spot ~ 8-10 kJ

Alpha energy ~ 274 kJ Fusion energy ~ 1370 kJ

Fusion Energy ~150x hot spot energy Alpha Energy ~ 30x hot spot energy

Difficult to explain without the thermonuclear instability taking place!

Assume propagating burn*

Simplified form of burn-up fraction: θ $\theta(\xi) \approx \frac{\xi}{4+\xi}$ $\xi \equiv \frac{n_i(0)\langle \sigma v \rangle R_0}{2C_s} = \frac{\langle \sigma v \rangle}{(m_D + m_T)C_s} \rho(0)R_0$ $\tau^{-10\text{keV}}$ $\rho(0)R_0$

 $\xi = 0.084$ $\theta(\xi) \approx 0.021$

$$E_f = \frac{\varepsilon_f \theta M_{DT}}{m_D + m_T} \approx 1.5 MJ$$

 ← from burnup fraction
← Consistent with measured yield

- Atzeni and Meyer-ter-Vehn, "The physics of inertial fusion", Oxford Science Pub
- Betti, ICF lectures, http://www2.me.rochester.edu/courses/ME533/

Next steps for indirect drive on NIF: repeat, optimize pulse shape, lower adiabat, higher convergence, higher areal densities, higher burnup fractions, higher yields

What is the highest yield from indirect drive on current NIF?

Laser Direct Drive on OMEGA

OMEGA experiments are not at ignition scale. An additional complication is the extrapolation of OMEGA results to ignition-relevant NIF energies

The goal of OMEGA DT cryo campaign is to demonstrate hydro-equivalent ignition at 2MJ of symmetric drive

Hydrodynamic scaling does not include important physics such as laserplasma interactions and the NIF polar geometry

Hydrodynamic scaling is insufficient for a reliable extrapolation from OMEGA to NIF. A direct drive experimental campaign is under way on NIF

Current NIF configuration is not optimal for direct drive:

Polar beam configuration

Not enough laser smoothing

Inadequate phase plates (beam shape)

Direct drive experiments on NIF study laser-plasma instabilities and laser-target energy coupling

Many factors impact the performance of direct-drive implosions on OMEGA

Predictive statistical models of the neutron yield are extremely accurate and speed up validation of new designs

UR LLE

Statistical predictions are used to optimize target specs and laser pulse shapes leading to higher fusion yields

The path to hydro-equivalent ignition on OMEGA requires only a modest increase in both yields and areal densities

Current OMEGA best performing implosions extrapolate to a fusion yield of ~1 MJ at 2 MJ of laser energy and symmetric illumination

Extrapolation for 2000-kJ symmetric drive

TC15875

Normalized Lawson triple product ($no\alpha$)

Summary

Significant progress has been made in improving implosion performance in both direct and indirect drive ICF

- > The path to ignition requires optimization of yields and areal densities
- Indirect drive on NIF has achieved conditions that can be interpreted as thermonuclear ignition
- □ Fusion energy output ~ 1.3-1.4 MJ
- □ Yield amplification from alpha heating ~ 27x
- □ Fusion yield ~ 150x hot spot energy
- □ Alpha energy ~ 30x hot spot energy
- **Doubling of temperature from alpha heating**
- Direct drive on OMEGA has achieved conditions that hydro-scale to ~1 MJ yield at 2 MJ of symmetric illumination and 80% of the Lawson triple product required for ignition

UR 🔬