Ion Acceleration: TNSA and beyond

Lecture 1

M.Borghesi

Centre for Plasma Physics, School of Mathematics and Physics

The Queen's University of Belfast

Advanced Summer School on laser-driven sources of high energy particles and radiation Anacapri, 10-16 July 2017

Ion acceleration : some general points

A.Macchi, M.Borghesi and M. Passoni, *Ion acceleration by superintense laser-plasma interaction*, Rev. Mod. Phys., **85**, 751 (2013)

- Several, fundamentally different mechanisms
- Large accelerating fields sustained by electron-ion separation in a plasma
- Very large fields (up to 10¹³ V/m) applied over very short distances (~µm)
- Mostly solids (high density targets)

Two classes of lasers are mainly used for ion acceleration

High energy CPA systems

- •Nd: Glass technology
- •100s J energy, up to PW power
- Low repetition rate
- 100s fs duration

VULCAN, RAL (UK) Phelix, GSI (De) Trident, LANL (US) Texas PW, Austin (US)

Ultrashort CPA systems

- •Ti:Sa technology
- •10s J energy, up to PW power

GEMINI, RAL (UK)

Draco, HZDR (De)

Pulser I, APRI (Kr)

J-Karen, JAEA (J)

- •1-10 Hz repetition
- •10s fs duration

• I_{max}~ 10²¹ Wcm²

Laser-ion acceleration: why not use wakefield?

Some ideas:

S. Masuda, T. Katsouleas and A. Ogata, Nucl. Instr. and Meth. A **455** (2000) 172 - 175.

F. Peano, et al, New J. Phys., 10, 033028 (2008)

Slow waves from Raman backscattering

Beat wave structure with variable phase velocity (frequency chirped pulses)

Breakdown of lectures

Lecture 1 : Sheath acceleration processes

(Tue, 9 am , 40 min)

Lecture 2: Other mechanisms - new developments

(Thu, 3pm, 50 minutes)

Lecture 3: Applications
 (Friday, 6.30 pm, 30 minutes)

Outline of Lecture 1

• Historical introduction

First observations

Target Normal Sheath Acceleration

The basic process

State of the art and beam properties

Laser acceleration of ions from laser irradiated targets was studied from 1960s throughout the 90s

Sov. Phys. JETP, **22**, 449 (1966)

Phys. Plasmas, **29**, 2679 (1986)

Ion acceleration was studied throughout the 90s

F. Beg et al, Phys. Plasmas, **4**, 447 (1997)

Laser intensity is key to efficient particle acceleration

Target Normal Sheath Acceleration (TNSA) from the rear of thin foils was studied from ~ 2000

Intensities rising above 10¹⁹ W/cm² – electron acceleration to MeV energies Thin foils allow electrons to reach the rear of the target and establish a field there Protons (from contaminants) have *beam* features contrary to lower energy, isotropic emission previously observed from the front.

LLNL data were obtained with Radiochromic film techniques

R. Snavely et al., PRL, **67**, 84 (2000)

Lawrence Livermore National laboratory experiments

R.D.Snavely et al, Phys. Rev. Lett., 85, 2945 (2000)

Radiochromic Film (Rads)

- Sharp edge proton beam with <u>cut off energy</u> of 50MeV and <u>slope</u> of 6MeV
- Higher energy protons were more collimated than lower energy
- The proton beam was <u>always normal to the back surface</u> of the target
- No protons > 8 MeV were observed from the front of the target

PW beam 500J, 0.5ps $I \sim 4x10^{20}$ Wcm⁻²

In 2000 there was controversy regarding the explanation of results

Ponderomotive acceleration (up to a few MeV) followed by electrostatic acceleration due to electron escape (*RAL-IC, CUOS Michigan*)

Fast electrons are held in proximity of the target by space charge effects. E-field at discontinuity estimated as E~T_{hot}/(eL_{ion}) can also accelerate ions (LLNL, supported by PIC simulations)

Acceleration by electric fields produced by the fast electrons travelling inside the target. *(RAL- IC)*

Several experiments have since shown that the dominant acceleration process for "thick" targets takes place at the target rear

Creating a gradient artificially on the rear surface changes very significantly the proton beam energy

J.Fuchs et al, Phys. Rev. Lett., 99, 015002 (2007)J.Fuchs et al, Phys. Rev. Lett, 94, 045004 (2005).

Lecture 1 - TNSA

Historical introduction

First observations

Target Normal Sheath Acceleration

The basic process

State of the art and beam properties

The established mechanism: Sheath Acceleration (TNSA)

High density, high energy electrons lead to ultralarge field

S. Wilks et al, PoP, 8, 542 (2001)

Conventional particle accelerators use much smaller fields

Acceleration by much smaller Electric fields associated to alternating voltages (at RF or microwave frequencies)

E_{max} ~ 50 MV/m

(more than 10,000 smaller than with lasers)

TNSA ion beam properties

- Low emittance/ high laminarity
- Ultrashort duration (~ ps at the source)
- **High brightness: 10**¹¹ **–10**¹³ protons/ions in a single shot (> 3 MeV)
- High current (if stripped of electrons): kA range
 - Divergent (~ 10s degrees)
 - Broad spectrum

Very compact: E~1-10 TV/m Acceleration lengths: ~ μm

Ion beam from TARANIS facility, QUB E ~10 J on target in 10 μm spot Intensity: ~10¹⁹ W/cm², duration : 500 fs Target: Al foil 10um thickness

Laser driven beams have excellent emission quality

Highly laminar source (virtual point source of ~µm size << *real* source)

15 MeV protons

CERN proton rf-linac: $\epsilon = 1.7 \pi$ mm-mrad

M.Borghesi et al, Phys Rev Lett., 92, 055003 (2004))

PIC simulations predict an excellent longitudinal emittance

Energy- or time-bunching may be possible with post-acceleration

Not only protons but heavier ions also accelerated

Varying the target, any ion can be accelerated (not straightfoward with RF accelerators)

High efficiency conversion of laser energy to heavy ions is achieved by removing hydrogen contaminants from target

M. Hegelich et al., Phys. Rev. Lett. 89, 085002 (2002)

TNSA energies – state of the art

Osaka

JanUSP

DRACO

 10^{21}

HERCULES

Conversion efficiency: ~ few %

Acceleration more effective with higher energy, longer pulses, at equal intensities

Effective on protons, less so on higher-Z species

Ð

>

<u>9</u>

Φ

Ð

0

Ö

O

aX N

Ś

0.1

10¹⁷

VULCAN

MPQ

Tokyo

ASTRA

CUOS LOA

"Record" spectra - long pulses (0.5-1 ps)

· - ·

Improved control of the laser parameters can lead to significant improvement

R.D.Snavely et al , PRL, 85, 2945 (2000)

F.Wagner et al , PRL, 116, 205002 (2016)

PHELIX, GSI 200J, 0.5 ps, I~ 2 10²⁰ W/cm² CH₂ target, 0.9 μm

Better focusing, prepulse control....

Proton spectra from *short pulse* laser systems : ~ 20-50 fs

Near-linear scaling of proton energy with Laser energy/intensity (~ 9 MeV/J)

A Macchi, A Sgattoni, S Sinigardi, M Borghesi, and M Passoni, *PPCF*, **55**, 124020 (2013)

Some other high energy claims

PHYSICS OF PLASMAS 23, 070701 (2016)

Radiation pressure acceleration of protons to 93 MeV with circularly polarized petawatt laser pulses

I. Jong Kim,^{1,2,a)} Ki Hong Pae,^{1,2} II Woo Choi,^{1,2} Chang-Lyoul Lee,² Hyung Taek Kim,^{1,2} Himanshu Singhal,¹ Jae Hee Sung,^{1,2} Seong Ku Lee,^{1,2} Hwang Woon Lee,¹ Peter V. Nickles,³ Tae Moon Jeong,^{1,2} Chul Min Kim,^{1,2,b)} and Chang Hee Nam^{1,4,c)}

PHYSICS OF PLASMAS 20, 083103 (2013)

CrossMa

Laser-driven 1 GeV carbon ions from preheated diamond targets in the break-out afterburner regime

D. Jung, ^{1,2,3,a)} L. Yin,¹ D. C. Gautier,¹ H.-C. Wu,¹ S. Letzring,¹ B. Dromey,⁴ R. Shah,¹ S. Palaniyappan,¹ T. Shimada,¹ R. P. Johnson,¹ J. Schreiber,^{2,3} D. Habs,^{2,3} J. C. Fernández,¹ B. M. Hegelich,¹ and B. J. Albright¹

W

Scattering noise interpreted as signal?

Need for community established protocols Rigour in analysis