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Amplification of Multiple Wavelengths (Broadband) typically needed
for short pulse operation & secondary sources

Depiction of scientists who must
amplify broadband radiation
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High intensity lasers operated at high average power are poised
to have far reaching impact on industry, society, and science
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EUV Litography
Extending Moore’s Law

Medical
PET tracer, tomography

Inertial Fusion Energy
Enabling laser fusion power

High-average Power, High-Intensity Lasers are poised to

have far reaching impact on industry, society, and science
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What do we need to make a short pulse?

1. Broadband spectrum (many different colors of laser light)
2. Ability to “line up” all the waves
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How does a free running broadband oscillator work with

bandwidth?
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How does a mode locked broadband oscillator work?
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Amplifying Intense Ultrashort Laser Pulses

Stretcher

Short Puls _l , -
Oscillator —{ J?y

CPA utilizes chromatic dispersion: Amplifiers

Phase velocity depends on wavelength

Compressor
L~ Atsiretch
il
—
Strickland & Mourou, Opt. Comm.56, 219, 1985
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Nanosecond pulse stretcher - principle

Reverse roof mirror

Focal plane

Grating
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» Telescope placed between compressor gratings effectively reverses the dispersion
sign
« A number of stretcher designs developed: all-reflection solutions for pulses <50 fs

Lawrence Livermore National Laboratory Advanced Photon Technologies, 7-2017 N A'Séi‘% 9

LLNL-PRES-700109  tianal Nuclear aministration



Group delay can be written as a Taylor Expansion of the spectral

phase
p-Sec(0)
T(d) = 1 Group delay as a function of angle of incidence (0),
1+ Cos (9 —sin~1 (ﬁ — Sin(e))) grating groove density (G), and grating distance (p),
and w= 2rc/A
GDD TOD FOD QOD
dp azq) 1 63(p 2 1 6449 3 .1 Bsrp 4
T\W) = + W — w —_1—I\w — W + w — w +——\wW — W
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T.S'n'ercher + TC‘ompressor + TP?,-'ise Width Controller + TMaa‘er:‘afdispersion =0

To obtain transform limited pulses the net group delay needs to cancel out over the laser
bandwidth
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Dispersion management in broadband laser systems

Goal:

Spectral dispersion introduced by Stretcher =
spectral dispersion by transmission optical elements +
spectral dispersion by reflective layers +
spectral dispersion by Compressor

Example:
Delay introduced by one compressor and 3 different stretchers.

300 500

Residual delay [fs
200 400 y [fs]
300 = Parabolic _
100 200 — Spherical Residual delay from

— Offner

0 108 summing compressor +
=100
100 stretcher delays
-200 —200
-300 -300
760 780 800 820 840 760 780 800 820 840

Wavelength [nm] Wavelength [nm]

from C.V. Filip, Computers at Work on Ultrafast Laser Design, Optics & Photonics News, May 2012
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Grating compressor: ns to fs pulses

: Carrier frequency:
grating
> 4 ‘L O=0o Pt
>

the gratings infroduce a frequency dependent time delay

» chirp = a linear frequency sweep, dw/dt
grating

The "blue" frequency component appears ahead of the "red" component = NEGATIVE CHIRP

Gl G4

G2 G3

E.B. Treacy, Optical Pulse Compression With Diffraction Gratings, IEEE J. Quant. El., Vol QE-5, pp. 454-458 (1969)
O.E. Matrtinez, IEEE J. Quantum Electron. QE-23, 59 (1987)
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A Typical Ultra-intense Laser Architecture

Oscillator/

Front End —>  Pre-Amplifier
Pump Laser Pump Laser
Amplifier Amplifier
Pump Laser Pump
Front End Laser
Front End
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Broadband laser amplifiers

Ti:Sapphire Absorption/Emission Spectra
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Remember from talk 1: High-efficiency strategy — still applies
with some adjustments

* Any energy that does not become laser light is ultimately heat that must be removed.

 Even diode pumped laser systems which have high efficiency operate between 3-20%
efficiency — that is still a lot of heat

* Minimize decay losses during the pumping process

- Use cladding and smaller apertures smaller to reduce amplified spontaneous
emission loss

* Use a pump profile with a high fill factor that gain-shapes the extracting beam
» Absorb nearly all the pump light
» Extract nearly all the available stored energy
- Operate at fluences well above the saturation fluence
* Multipass the extracting beam
+ Keep passive optical losses low
* Relay the beam to the middle of each amplifier to minimize edge losses
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New issues specific to short pulse require extremely detailed
design and attention during commissioning to meet
performance requirements

« Contrast is important to deliver energy for secondary sources
Example: Assume you have a petawatt laser system which is easily capable of 1021 W/cm2
for use in secondary source generation.
A beam with 10110:1 contrast (difficult) still has prepulse of 10012 W/cm2 which is
enough to vaporize solid targets.
« Need >10"11:1 - very difficult
« Gratings, stretcher optics, transmissive optics, mirror surfaces, amplifier
spontaneous emission, and even quantum noise sets the limit on background and
prepulse contrast.
« Every surface, material must be carefully managed to avoid these problems

 Nonlinear phase accumulation or B-integral:

 Long pulse limit was ~2 rad.

* Short pulse system limits more like ~1 radian.

* Issueis nonlinear phase shifts colors around within the pulse messing up the chirp.

« Since B is intensity dependent any intensity spatial nonuniformity will result in spatially
non uniform chirp which is not correctable

« B integral also transfers energy from post pulse to pre-pulse where it becomes a
contrast issue.
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*
1996: LLNL Demonstrates First Petawatt Laser: 600 J, >1 PW

Petawatt discoveries:

- 1.3-PW =1,300,000,000,000,000 Watts of power
e ~1022 W/cm?

« 10-100-MeV electron beams

 Laser made proton beams

Hard x-rays and gamma-rays

Photo-fission

| P

e
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Two major high intensity petawatt laser projects at LLNL

Advanced Radiographic Capability

12000 J

50 ps

1 shot/2h
up to 4 PW
108 W/cm?
2014

High repetition-rate Advanced
Petawatt Laser System (HAPLS)

High-repetition-rate Advanced Petawatt Laser System (HAPLS)

World’s most energetic Petawatt laser

12,000 J in 10 ps, 1 shot/2 hours

World’s highest rep-rate Petawatt laser (10 Hz)

30Jin 30 fs, 10 shots/second

1 Petawatt = 10> Watts = 1,000,000,000,000,000 Watts

LLNL-PRES-700109
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Modifications to the NIF quad (Q35T) are required to protect NIF
& ARC components, optimize ARC performance and permit
changing from NIF to ARC during automated shots

Triple pulse
PEPC

Replace Nd slab with ARC/NIF pick-off mirror

polarizer reduces # of
slabs on ARC quad

switches beams from NIF
to ARC final optics

to increase 1w
backscatter

to reduce backscatter Transport Optic

gain & manage isolation Transport
birefringence Spatial
Power Amp Filter \
‘ Compressor
Assembly
_ Target
' Positioner

Main ; ARC
Polarizer
Defo_rmable Amplifier : H diagnostic
mirror High Contrast Dual Regen table
. Front End Amplifier (ADT)
Fiber

NIF
Master Oscillator

ARC final optics

Wavefront control High Contrast Front-End (HCAFE) '
optimized for TCC compress chirped

and Dual Regen Table (DRT) produce
focus using target in 2 beamlets that can be independently
the loop (TIL) timed and each match the group
software delay of the 2 different compressors

A half waveplate in the pulses and
preamp is inserted/removed focuses beamlets
to switch between ARC & NIF to TCC
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The High Contrast ARC Front End (HCAFE) uses short pulse OPA
technology* to produce high temporal contrast

20 uJ 50 nJ

[ OPA""4(2) Cleaner rionvone » (AP (AT —> A
Commercial —> OPA /
Nd:glass \ Bulk Stretcher
Oscillator SP-Regen P SHG \ Trombone Pulse Width Spectral B
Controller-B Shaper-B

Oscillator Cleaner Stretcher Pulse Control

*Based on LLE Omega EP front-end OPA (C. Dorrer, et al., CLEO 2011)
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The dual regens (DRT) & split beam injection (SBI) produce 2
beamlets that can be independently timed

_ul;' "",
4 ’_ﬂlll

ARC ILS
Nearfield Beam
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The High Contrast Front End output meets prepulse contrast
requirement of 80 dB for t < -200 ps

Third Order Auto Correlator Pre Pulse Contrast Measurements
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= Higﬁ.h-repetition-r"ate Advanced Petawatt Laser System

Integrated Controls

ELI Beamlines

facility control

DPSSL pump lasers

v

Frontend

Pulse shaping
and contrast
enhancement

Stretcher

wideband
Multipass
Amplifier

Alpha
Amplifier

]

A 4

Deformable
Mirror

v

Modified NIF
front-end

Pump power
amplifier

Harmonic
converter

Beam
Conditioning

Beta
(Power)
Amplifier

*

3.2 MW laser
diode arrays

Power
amplifier
diagnostics

—

Compressor

v
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10 Hz rep rate allows adaptive feedback enabling highest intensities

Lawrence Livermore National Laboratory
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HAPLS Petawatt System is compact and hasa 17m x 4.6 m
footprint

Petawatt power
amplifier

Pump laser frequency
converter and homogenizers

\

Compressor

Pump laser power amplifier
3.2MW laser diode arrays

Pump laser frontend

Short pulse a-amplifier

\ DPSSL pump 2J green

Short pulse laser frontend with
high contrast pulse cleaner
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Heat can be extracted through the “edge” or the “face”

1] H
Rod amplifiers THIN DITSK' ”actlve multislab-face-cooling
mirror
He gas cooling
Laser emission Laser emission * ********
M [l Active medium
\ I 1AAAARA [}
% Pump light slslslzlalals 7/ Pump light
= Flattemperature
£ "“1'53225?:22”"’ . .
z HHHHHHHH
% I N iy N iy By B iy
o«
;’fcfﬁﬂ‘ﬂﬁif,i';ﬁ S Heat extraction through i 7 N
LTI back side of the disk *********
» Conductive cooling through » Conductive cooling through » Conductive/convective cooling
edges back side with liquid (National
« Stress orthogonal to laser « Stress parallel to laser beam Energetics) or Helium gas
beam * Low energy storage (LLNL, RAL)
* High energy storage « Stress parallel to laser beam
* High energy storage
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LLNL's HAPLS Laser slabs are cooled by rapidly flowing, room
temperature He-gas

Gas-cooled amplifier HAPLS production
prototype Amplifier Assembly

Amplifier
slabs

Pump

“

|
il

\¢

Face cooled Nd:Glass slabs
Room temperature Helium gas coolant
Gas acceleration vanes Mach 0.1

Cooled ASE Edge claddings
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Energy (J)

Continuous 1hr run delivering

100Joule pulses at 340W

E,,.=101J
dE=0.7% RMS
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Shot-to-shot variation (rms)

Energy stability scales with output
energy. Predicted <0.35% @ 200J

Output Energy ()
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Today HAPLS delivers 80J of second harmonic light
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The commercial short pulse front end provides a robust, turn-
key stretched-pulse seed to HAPLS short pulse beamline

TOCC - Contrast measurement
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The last time the SPFE system required manual alignment
was >12months ago

Robust XPW Pulse Cleaner enables achieving reliably ~10° Includes an LLNL-built Offner-triplet

temporal contrast and 10 (5ps) in optimized configuration stretcher with a 20,000:1 stretch factor
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The short pulse laser architecture utilizes dual amplifier zero
propagation architecture to achieve high mode-fill and stability

Beam size 5x5 cm?
IGas cooled Ti:sapphire

To compressor
> 21 x 21 cm?

* Fully relay imaged

* Only 2 amplifier stages
» Distributes gain

Short pulsefrontend B 4 « ASE management

* Minimizes cost

Beam transport all reflective for beam size >1cm? * Improved stability
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The Ti:Sa short pulse power amplifier is pumped with
~1 kW 2m and utilizes the same gas-cooling concept

Approx. 50% of the pump incident to Ti:sapphire dissipated into heat
 ~heat load doubles when unextracted

* High-speed flow of helium gas between Ti:sapphire slabs removes heat
« HAPLS uses solid state edge claddings

Vacuum chamber surrounding
amplifier head

amplifie
‘ slabs

extraction

Relay imaging used to

minimize wavefront

distortions and amplitude
modulation

Gas-cooled amplifier hea(f
A e design based on Mercury

Lawrence Livermore National Laboratory Advanced Photon Technologies, 7-2017
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T
, the HAPLS delivers 16J of 6 )

'Hz and pulse duration 28fs.

p=28.1fs
o0 =14fs=5.0%

-50

0
Time (fs)
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ressor output energy
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The HAPLS laser runs 200,000 times faster
than both ARC and the original 1996 Petawatt
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HAPLS is the first laser system that approaches a performance
level consistent with real applications

1w 10W 0.1kW 1kW 10kW 100kW 1MW

1 i I

10°;
10%;

1000

Energy [J]

100}

10}

1 % i h A A »
1075 0.001 0.100 10 1000
Repetition Rate [Hz]
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