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Outline:

e We need high power lasers: high energy
and high repetition rate = high average
power

=> Butthe kW level looks like a barrier

e We need high quality beams for frequency
conversion, for pumpingTi-Sapphire or for
OPCPA

e I|tissaidthat diode pump lasersare highly
efficient while flash lamp pumped lasers
are not.

e Whatdo we know about kW class diode-
pumped solid state lasers (DPSSL)?

e |sthere any “of the shelf” technology ?
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/‘ Technical specification

Create a laser beam that can be propagated and focussed:

But getting these three parameters at the same time is highly challenging:

Low divergence (<< 0.1 mrad)

High intensity (Power / beam area >>GW/cm?)
Focusability to few wavelengths
Monochromatic (AA/A<< 109)

Large bandwidth (AMA = %)

Highest possible efficiency
High beam quality (close to M?=1)
High energy/ high power (+ high repetition rate = high average power

/kilowatt or multi kilowatt range)
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-~ Some data about high average power lasers

Diode pumped lasers
can be very efficient

Examples can be found
in Quantum Electronics
39 (1) 1-17 (2009) when
power > 100 W and
optical to electrical
efficiency can reach 23-
24% (cooling is not
taken into account)
Most of these examples
concerns CW lasers

Two examples are high
rep-rate QCW lasers
(rep-rate > kHz),
efficiency looks very
good too (17-24%)
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LA7 > Looking at both efficiency and beam quality
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None of these highly
efficient lasers are
suitable for frequency
conversion because
M2 > 10

As soon as M? > 4 it
Is quite impossible to
have a good
frequency conversion
efficiency unless
having intra-cavity
frequency conversion
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LG > Why ?

If we discuss the possibility of extendingsolid-state laser technology to high-
average-power and of improvingthe efficiency of such lasers, the critical
elements of the laser design are:

e thethermal management (removingheat from the center of the solid
with a cooling system at the end surfaces),

e thethermalgradient control (minimizing optical wave front distortions),

e the pump energy utilization (overall efficiency includingabsorption,
stored energy, gain etc),

e the efficient extraction (filling most of the pumped volume with extracting
radiation and matching pump duration to the excited-state lifetime).

Does it make sense to optimize all these parameters? We can win a world
record in laser extraction efficiency but can we achieve efficient second-
harmonic-generation or how many times diffraction limited is the laser
beam?
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Wavefront and light rays

Flat intensity and phase beam:

« diffraction limited beam focused to
the diffraction limit according to the
Airy disk pattern.

. The larger the size of the beam “a”, ‘ \
the smaller the focal spot.

« The shape of the focal spot is the
square of the 1st order Bessel
function: J4(z)/z.

Wavefront [ 5
If the beam is suffering distortions, I
then the wavefront is no longer a —
plane. Rays are perpendicular to the _—— |}§ k» vectors

wavefront. A “ray” has a direction
given by its “k” vector




g e

//Q( Back to basics = wave front distortion

e Aflat wave front beam T m/
should give a perfect a

Airy disk pattern when l U g = 1224

focused

e |
AIRY DISC DIAMETER = 2.44 )\ f/#

Airy disk

e Adistorted wave front
beam cannot be focused

to that minimum size # N

e Inotherwords the - (
encircled energy is low 3 ,
or the M?is high % / /
e M? meansthat the M2 x Airy disk
beam is M? x Diffraction
Limit A real beam propagates like a perfect beam

whose intensity would be divided by M* !
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,%f' Beam transport

Object plane Image plane

Beam transport is possible with
afocal optical systems

+—— _ Apinhole is located at the focal
plane

Spatial frequencies can be seen
at the focal plane




Beam transport

Obiject plane

Image plane

Image relay planes

Pinholes are relay imaged too




S Y Spatial Filter
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L Relay imaging

Stage 1 input
Stage 2 output
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L=GL, L=L/G
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(A

Filtering is possible in the Fourier plane

The electromagnetic field in the focal plane of a lens can be
calculated in the framework of Fresnel diffraction.

_ 0 ko200 27 ;
AX,Y)= 7 fExpz—k(x +) )ﬂ’A()a), yo)ExpTZ(XXO,Yyo)dxodyo
Reduced variables are optical frequencies (X, Y) = (x, y)/Af

Pinhole size = half-angle of the pinhole as seen from the lens =
optical frequency 6= A/p

AA=1um, =1 mrad < p=1mm

Frequencies that can grow

Low frequencies with non linear Kerr effect (B)
/ removed by DFM 4
A(XO’yO) ,' . High frequencies
/ s /removed by pinholes
E— /
/ \
4 \
¥ \ Spatial frequency
N Jrads
N 20 100
: - - > mm
\ 50 1
- N A
\ = distance between actuators
Al
50 10
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A

,/@ The Functions of Spatial Filtering

» Suppressing high spatial frequency modulations with a single
pinhole

* Reducing ASE solid angle
« Magnifying beam size
* Imaging relay planes

Bruno Le Garrec LPA school Capri 2017 page 14



Energy balance in an optically pumped SSL*

External Power

Lamp input 100%
Heat dissipated by lamp 50%
Power radiated (0,3 to 1,5 ym) 50%

v v
Lamp input Power supply and circuit losses
[100%
v v
Heat dissipated by lamp Powerirradiated
50% 50%

Y

A 4

Y

A 4

Powerabsorbed by
pumping cavity

Powerabsorbed by

Laserrod

Powerabsorbed by
Coolantand flowtubes

Reabsorption
by lamp

30%

8%

7%

Y

A 4

Y

Heat dissipated by rod

Stimulated emission

5%

5%

2.6%

Fluorescence output

0.6%

A

Laseroutput

2%
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A 4

Optical losses

0.6%

Power absorbed by

Pump cavity 30 %
Coolant and flowtubes 7%
Lamp 5 %

Laser rod 8%

Heat dissipated by rod
5%
Fluorescence 0.4%
Stimulated emission 2.6
%
Optical losses 0,6 %
Laser output 2%

*From W. Koechner “Solid state laser
engineering”
NIF/LMJ are in the range 0.5t0 1 %
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//{/)/'4; Back to basics = laser physics

Optical resonator or cavity
/\

Amplifying solid-state medium:
Rod or slab Output laser beam
I H I I I I I * During pumping, all that is not
Pump “in” the beam must be removed
(flash lamps as heat otherwise it will induce
| diod ’ wave front distortions of the
aser diodes ) output laser beam
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> Thermal gradient : thermal lensin
pral © ;

Probe beam Focal point

/‘.\

e Assumption:uniforminternal heat generation and coolingalongthe
cylindrical surface of an infinitely longrod leads to a quadratic
variation of the refractive index with radius r : n=n,-zn,r?

e Thisperturbationisequivalentto a spherical lens f'=2mr?K/(P,dn/dT)
with K the thermal conductivity, dn/dT the thermo-opticcoefficient
and P, the absorbed power.

e Temperature-and stress-dependantvariationofthe refractive index +
the distortion of the end-face curvature modifies the focal length
about 25 %
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/’ ' Thermal management

e Thermo-optical distortions 5
P, d
AT oc —rem with d =d.,t,w

therm.cond

e Kisthethermal conductivityand dn/dtthe thermo-optic
coefficient and o the thermal expansion coefficient

e Figure of merit = K/(dn/dt)

e + Thermallyinduced birefringence

e Stress fracture related to shock parameter

poisson )K therm .cond S T

_(1—1/

(04

RT

therm .ex young

e Figure of merit=K/a
e We can compare the behaviour of different laser materials
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(7

})l,rod = 8‘77”1€Tb

Thermal management

Gain profile

N

Rb|l
F, g =12 g A 5% \

o=

pumping ~*

Slab

=

t. cooling
, pumping  cooling Gain profile
How much power ?
At 20% stress fracture : rod slab l
b=0.2 Ry P, Py P (W)
(W/cm) (W/cm) (W/icm?) for 100 cm®
glass 043 2.2 1 100
LG750
SFAP 0.8 4 2.2 220
ST5(PO4)3F
YLF 1.8 9 4.3 430
LiYF4
YAG 8 40.2 19.2 1920
ALO3 100 500 240 24000
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7 ®

L

Working at cryogenic temperature

10 Toedod o bbb L T e o o T
Optical efficiency of diode-pumped SO 001 Y . o0~ it =it
10% Yb-doped sesquioxides ceramics. :
Efficiency = laser output/diode output
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 G. Slack, D. Oliver, “Thermal conductivity of garnets and phonon scattering by rare-earth ions”,
Phys. Rev. B, 4(2), p.592-609, 1971
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Thermal management

| know what | wantto do:

Remove heat from the (center of the) solid with a cooling system (at
the end surfaces) => better cooling

Minimize optical distortions (wave front distortion) = get a flat
thermal gradient => better “uniform” pumping

Increase the pumping efficiency (absorption, stored energy, gain etc)
=> diode pumping

Increase the extraction efficiency, filling most of the pumped volume
with extractingradiation and matchingpump duration to the
excited-state lifetime => diode pumping

Does it make sense to optimize all these elements ?

Can | achieve second harmonicgeneration or how many times
diffraction limited is my laser beam ?
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’é&,‘ Thermal gradient control

e If thegain profileis flat (pump
uniformity) then the thermal
gradient will be flattoo

e Infactlonlycare ofthe
transverse gradient because
the beamdon’t “see” the axial
one

e Many thinslabs (at Brewster
angle can be associated to
design an amplifier)

=

pumping ~*

Gain profile

Slab
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cooling
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gﬁl. Cryogenic gas cooled multi-slab amplifier

Inlet

ceramics
N

N i e
- Ty =

Stainless
steel

Yb:YAG \<

di id} {d} id} id} id} {d} i{d} id

WoW W W W W W
wnsou L1000 L v
* * * * * * * * Vanes:
Shape
Outlet not specified, : :
stainless 5
steel

Kilowatt average power 100 J-level diode
pumped solid state laser
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