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SASE FEL Electron Beam Requirements: 
High Brightness Bn 
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Bunch compressors 

(RF & magnetic)

Laser Pulse shaping 

Emittance compensation 

Cathode  emittance 
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Short Wavelength SASE FEL Electron Beam 
Requirement: High Brightness Bn > 1015 A/m2 



Longitudinal	
  Manipula.on	
  



The problem of relativistic bunch length 
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Length contraction? Low energy electron bunch injected in a 
linac: 



Magnetic compressor (Chicane) 
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ΔΕ/Ε = 0

Δx = R16(s)ΔE/E 

bend-plane emittance growth 

e– 
R

Coherent Synchrotron Radiation (CSR) 

σz 

coherent radiation for λ > σz 

overtaking length:   L0 ≈ (24σzR2)1/3 

ΔΕ/Ε < 0

s
Δx 

• Powerful radiation generates energy spread in bends 

• Causes bend-plane emittance growth (short bunch worse) 
• Energy spread breaks achromatic system 
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Velocity bunching concept (RF Compressor) 
If the beam  injected in a long accelerating structure at the crossing field phase and it is 
slightly slower than the phase velocity of the RF wave ,  it will slip back to phases where the 
field is accelerating,  but at the same time it will be chirped and compressed. 

The key point is that compression and acceleration take place at the same time within the 
same linac section, actually the first section following the gun, that typically accelerates the 
beam, under these conditions, from a few MeV (> 4) up to 25-35 MeV. 
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Transverse	
  Beam	
  Dynamics	
  

https://arxiv.org/ftp/arxiv/papers/1705/1705.10564.pdf
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Trace space of an ideal laminar beam 
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Trace space of a laminar beam 
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X’ 

Trace space of non laminar beam 



In a system where all the forces acting on the particles are linear (i.e., 
proportional to the particle’s displacement x from the beam axis), it is 
useful to assume an elliptical shape for the area occupied by the beam 
in x-x‘ trace space. 
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x + kx = 0



Twiss parameters:
 12 =−αβγ

Ellipse equation:

Geometric emittance:
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γx2 + 2αx $ x + β $ x 2 = εg

Ellipse area:
 A = πεg

!β = −2α





Trace space evolution

With space charge => no cross over





No space charge => cross over
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rms emittance 
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rms beam envelope: 
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Define rms emittance: 

such that: 
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It holds also the relation: 

Substituting             we get 
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We end up with the definition of rms emittance in terms  of the 
second moments of the distribution: 

σ x = x2 = βεrms

σ x ' = x '2 = γεrms

σ xx ' = x !x = −αεrms
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What does rms emittance tell us about phase space distributions 
under linear or non-linear forces acting on the beam? 

Assuming a generic            correlation of the type: 
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Normalized rms emittance:


px = pz !x = mocβγ !xCanonical transverse momentum: 

Liouville theorem: the density of particles n, or the volume V 
occupied by a given number of particles in phase space 
(x,px,y,py,z,pz) remains invariant. 

It hold also in the projected phase spaces (x,px),(y,py)(,z,pz) 
provided that there are no couplings 
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Limit of single particle emittance

Limits are set by Quantum Mechanics on the knowledge of the two 
conjugate variables (x,px). According to Heisenberg:  

This limitation can be expressed by saying that the state of a particle 
is not exactly represented by a point, but by a small uncertainty 
volume of the order of      in the 6D phase space. 
 
In particular for a single electron in 2D phase space it holds: 
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   Where       is the reduced Compton wavelength. ! c



εn,rms =
1

moc
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2( ) = x2 βγ "x( )2

− xβγ "x 2( ) = βγ εrms

Assuming small energy spread within the beam, the normalized and 
un-normalized emittances can be related by the above approximated 
relation.  

px = pz !x = mocβγ !x

This approximation that is often used in conventional accelerators 
may be strongly misleading when adopted to describe beams with 
significant energy spread, as the one at present produced by plasma 
accelerators.  

Normalized and un-normalized emittances  



When the correlations between the energy and transverse positions are 
negligible (as in a drift without collective effects) we can write:  
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which can be inserted in the emittance definition to give:  
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Assuming relativistic electrons (β=1) we get:  
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showing that beams with large energy spread an divergence 
undergo a significant normalized emittance growth even in a drift  

 
•   Energy  350 MeV 
•   Beam divergence  1 mrad 
•   Energy spread  1% 
•   Beam spot-size 1 µm 
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Phase space, slice emittance  and longitudinal correlations 
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It holds also the relation: 

Substituting             we get 
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We end up with the definition of rms emittance in terms  of the 
second moments of the distribution: 
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Envelope Equation without Acceleration


Now take the derivatives: 
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We obtain the rms envelope equation in which the rms emittance 
enters as defocusing pressure like term. 
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Beam Thermodynamics


Kinetic theory of gases defines temperatures in each directions and 
global  as:   

Definition of beam temperature in analogy:  
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Assuming that each particle is subject only to a linear focusing  

force, without acceleration: 
 
take the average over the entire particle ensemble  
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We obtain the rms envelope equation with a linear focusing force 
in which, unlike in the single particle equation of motion, the rms 
emittance enters as defocusing pressure like term. 

!!σ x −
x !!x
σ x

=
εrms

2

σ x
3

Envelope Equation with Linear Focusing




Space Charge: What does it mean?
The net effect of the Coulomb interactions in a multi-particle system can be 

classified  into two regimes:

1)   Collisional Regime ==> dominated by binary collisions caused by close 
particle encounters ==> Single Particle Effects

2) Space Charge Regime ==> dominated by the self field produced by the 
particle distribution, which varies appreciably only over large distances 
compare to the average separation of the particles ==> Collective Effects
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Lorentz Force

Fr = e Er −βcBϑ( ) = e 1−β 2( )Er =
eEr

γ 2

The attractive magnetic force , which becomes significant at high velocities, tends to 
compensate for the repulsive electric force. Therefore space charge defocusing is 
primarily a non-relativistic effect.

is a linear function of the transverse coordinate
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Envelope Equation with Space Charge
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External Focusing Forces

Space Charge De-focusing Force

Emittance Pressure

Now we can calculate the term        that enters in the envelope equation
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Including all the other terms the envelope equation reads:
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Laminar Beam

Thermal Beam

The beam undergoes two regimes  along the accelerator 



Space Charge induced emittance oscillations

in a laminar beam  
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Plasma oscillations



Neutral Plasma


Magnetic focusing


Magnetic focusing


Single Component       
Cold Relativistic Plasma


• Oscillations


• Instabilities


• EM Wave propagation




Single Component 
Relativistic Plasma
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Small perturbation:
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Perturbed trajectories oscillate around the equilibrium with the same frequency 
but with different amplitudes:
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σ s( ) =σ eq s( ) +δσ o s( )cos 2ksz( )

Perturbed trajectories oscillate around the equilibrium with the same frequency 
but with different amplitudes:



εrms = σ x
2σ x '

2 −σ xx '
2 ≈ sin 2ksz( )



0 1 2 3 4 5
metri

-0.5

0

0.5

1

1.5

2

envelopes

0 1 2 3 4 5
metri

0

20

40

60

80

emi

σ(z)

ε(z)

Envelope oscillations drive Emittance oscillations 
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Emittance Oscillations are driven by space charge differential 
defocusing in core and tails of the beam 
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Perturbed trajectories oscillate around the 
equilibrium with the  

same frequency but with different amplitudes 



Plasma Accelerator
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Envelope Equation with Longitudinal Acceleration



Envelope Equation with Longitudinal Acceleration
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Other External Focusing Forces

Space Charge De-focusing Force

Adiabatic Damping Emittance Pressure
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Looking for an equilibrium solution of the form: σε = γ nσ o

We get the matching condition with acceleration: 
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