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Overview of lecture 2

● Limitations of conventional PIC codes → numerical artifacts
associated to finite resolution and/or poor sampling result in
incorrect description of the physics: 

– error from particle pusher;

– incorrect dispersion of EM waves on a grid;

– unphysical kinetic effects.

● Solutions to some of the issues presented.
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Errors from particle pusher 
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The Boris pusher (review)
● Conventional PIC codes use the Boris pusher (2nd order accurate) to

integrate the equations of motion for the numerical particles  

time

(n-1)Δt nΔt (n+1)Δt
pn-1/2

rn, [En, Bn]

pn+1/2

rn+1

pn-1/2 → p- = pn-1/2 + q En (∆t/2)

t = q∆tBn/2mcγn 

γn = [1+(p-/mc)2 ]1/2

s = 2t/(1+|t|2)

p' = p- + p- x t 

p+ = p- + p' x s 

p+ → pn+1/2 = p+ + q En (∆t/2)

p- →  p+: rotation 
around Bn by an angle
arctan[q∆tBn/2mcγn]

rn+1 = rn + vn+1/2∆t

momentum

position
4



  

Test: particle in a 1D plane wave/1
● The motion of a particle (electron) in a 1D plane wave is integrable
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Test: particle in a 1D plane wave/2
● Accuracy deteriorates with increasing wave amplitude
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Incorrect electron motion in the laser field
affects wake excitation

Convergence of the longitudinal phase space (z, p
z
) in a self consistent simulation

(laser a
0
 = 4, τ = 10 fs, density 1019 e/cm3, 30 particles/cell) changing the resolution
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Sub-cycling is an efficient solution to the problem

● Good accuracy requires the time step to satisfy: Δt/T
laser

 << 1/a
0

→ criterion ensures that the rotation in B-field during Δt is small at locations
where B is max 

● Besides decreasing uniformly the time-step (expensive), a more efficient
solution is to use adaptive sub-cycling 

u
x
/a

0

2u
z/a

02

1. check the estimated rotation angle 
ψ in Δt 

2. if  ψ>ψ
*
 (threshold) redefine Δt → 

Δt'=Δt/4 (repeat until suitable time step 
is found)

3. Revert to original time step when 
possible

Arefiev et al, Phys. Plasma 22, 013103 (2015) 8



  

Spurious emittance growth for ultra-relativistic
bunches due to spatial staggering of E and B

● For a highly relativistic bunch (γ
b
 >> 1), the electric (defocusing) and magnetic

(focusing) forces experienced by a generic electron in the bunch due to the bunch
self-fields should cancel (almost) perfectly: F

E
/F

B
 ~ 1/γ

b

2 

● E and B are spatially/temporally staggering → interpolation error → non-perfect
cancellation between F

E
 and F

B
 causes emittance growth for bunches with ultra low

emittance (problem for “collider” applications)  
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v
b
~c, γ

b
 >> 1 

E

B

→ Problem can be mitigated by using nodal 
fields (no spatial staggering, but requires
going beyond Yee)

→ Problem can be mitigated using “beam 
frame Poisson solve” technique [bunch self
field computed in the rest frame of the 
bunch and then added to the wakefield]
(E. Cormier-Michel, AAC2012 Proc.)

F
B
=-e v

b
 x B

F
E
 = -e E

[E. Cormier-Michel, AAC2012 Proc.] 



  

Incorrect dispersion of 
EM waves on a grid
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● In conventional PIC codes Maxwell equations are discretized in space and
time according to the Yee scheme (2nd order accuracy via staggering in space 
and time)

Discretized Maxwell equations (review)

(En+1

j
  - En

j
)/Δt =-c (Bn+1/2

j+1/2
  - Bn+1/2

j-1/2
)/Δz

(Bn+1/2

j+1/2
  - Bn-1/2

j+1/2
)/Δt =-c (En

j+1
  - En

j
)/Δz

(1D in vacuum) [E
x
=E, B

y
=B]

t(n-1)Δt nΔt (n+1)Δt

x

(j-1)Δx

jΔx

(j+1)Δx = B field

= E field

→ E and B are interlaced
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Von Neumann analysis of 1D discretized
wave equation

(En+1

j
  - 2En

j 
+ En+1

j
)/Δt2 =c2(En

j+1
  - 2En

j 
+ En

j-1
)/Δz2      (1)

[∂2E/∂t2 = c2 ∂2E/∂z2 for Δz → 0 and Δt → 0]

E=E
0
 exp(ikz-iωt) →  E

j

n=E
0
 exp(ikjΔz-iωnΔt) in  Eq. (1)

Wave number Frequency

[ω2 = c2k2 for Δz → 0 and Δt → 0]
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Numerical dispersion of EM waves on a grid [1D]/1
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imaginary ω (unstable)
sin(ωΔt/2) = (cΔt/Δz) sin(kΔz/2)

Poorly 
resolved 
EM waves

Sufficiently 
resolved 
EM waves

● Standard PIC codes are unstable if cΔt>Δz [Courant/CFL limit] (in an EM
code signals cannot travel faster than the speed of light)

● EM waves in PIC have a k-dependent (and Δt/Δz-dependent) velocity (≠ c) 13



  

k/k
max

10

● Phase velocity of EM waves on a grid v
Φ
=ω/k

● The shorter is the wavelength, the slower is the phase velocity;

● A k-dependent phase velocity implies a k-dependent group
velocity (e.g., the laser group velocity is lower than the right one,
this remains true for propagation in plasma);

● Best results for cΔt=Δz;

Poorly resolved 
EM waves

Numerical dispersion of EM waves on a grid [1D]/2
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● Von Neumann analysis in 3D gives

Numerical dispersion of EM waves on a grid [3D]/1

[ω2 = c2(k
x

2 + k
y

2 + k
z

2) for Δx, Δy, Δz, Δt → 0]

● Velocity depends on the wavelength and propagation direction;

● Waves are always slower than c  along the main axes (x, y, or z);

● Correct phase velocity can be obtained along the 3D diagonal (k
x
=k

y
=k

z
) if

Δx=Δy=Δz and cΔt=Δz/√3 (CFL condition);

<Δz (long.)

15



  

Numerical dispersion of EM waves on a grid [3D]/2

Example: expanding electromagnetic wave (anisotropic propagation)

x x

yy
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Numerical dispersion results in incorrect
laser propagation in plasma

β
g
 ≈ 1 – λ

0
2/(2λ

p
2) [1D limit], a

0
<<1

n
0
=1018 cm-3

n
0
=1019 cm-3
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Incorrect laser propagation results in numerical
dephasing (incorrect LPA description)

Slower laser results in smaller energy gain for e-bunch in an LPA
(the e-bunch catches up with the laser → shorter dephasing length).

Cowan et al, PRSTAB 16, 041303 (2013)

← high resolution, Δx=λ/32

← low resolution, Δx=λ/16

n
0
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L
deph

=4.3 cm

18



  

Incorrect phase velocity for EM waves results
in spurious numerical Cherenkov radiation

Lehe et al, PRSTAB 16, 021301 (2013)

● Cherenkov radiation – whether physical or numerical – occurs when phase velocity 
of EM waves is < c. Relativistic particles traveling at ~c can excite these waves.

● In a PIC code where Maxwell equations are solved with Yee scheme EM waves have
a phase velocity < c (numerical artifact) → spurious Cherenkov radiation

Cherenkov 
radiation

→ Cherenkov radiation induces spurious
bunch emittance growth (degradation of
bunch quality)
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Numerical dispersion improved via non-standard FDTD
schemes 

Standard Non-standard

*Lehe et al, PRSTAB 16, 021301 (2013)

● Standard FDTD (Yee)
α

x
=1, 

β
x,y

=β
x,z

=0, δ
x
=0

Ex.: Modified curl* operator (longitudinal component)

● The choice of the coefficients
allows to “tune” the dispersion
properties of the solver (several
options available, e.g. no 
dispersion along longitudinal axis)
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Correct laser propagation with non-standard
FDTD  

Cowan et al, PRSTAB 16, 041303 (2013)
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Suppression of numerical Cherenkov radiation
with non-standard FDTD

Lehe et al, PRSTAB 16, 021301 (2013)

Yee

Non-standard FDTD

→ No spurious Cherenkov radiation
around the bunch

- - Yee

–-  Non-standard FDTD

→ Less emittance growth 
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Improved dispersion with high-order finite difference
schemes in space and time/1

Benedetti et al, IEEE Transactions on Plasma Science 36, 1790 (2008) 

Temporal evolution => Runge-Kutta 4 (for particles and fields)
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β
g
 ≈ 1 – λ

0
2/(2λ

p
2) [1D limit], a

0
<<1

n
0
=1018 cm-3

n
0
=1019 cm-3

– Yee scheme (2nd order)
– High-order scheme 
   (6th order space + 4th order in time)

Improved dispersion with high-order finite difference
schemes in space and time/2

← Accurate description of laser
propagation with high-order 
schemes 
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Pseudo Spectral Analytical Time Domain (PSATD)
scheme 

1. I. Haber et al., Advances In Electromagnetic Simulation Techniques, in Proc. Sixth Conf. Num. Sim. Plasmas,
(Berkeley, Ca, 1251 1973)
2. J.-L. Vay et al., Journal of Computational Physics 243, 260 (2013)

● PSATD scheme [1] features a Fourier representation for Maxwell equations
- derivatives → multiplications in k-space
- analytical time integration over Δt (if source assumed constant) 

where C=cos(kΔt)  S=sin(kΔt)

==> no CFL condition
==> strongly mitigates numerical dispersion problems (better at low
density, no dispersion in vacuum)
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Unphysical kinetic effects
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PIC simulations of LPAs show unphysical kinetic
heating (≠ grid heating)/1

FLUID (exact Vlasov solution) VS PIC simulation of a dark current free 
LPA (a

0
=2, k

0
/k

p
=10, k

p
L=2)

k
p
(z-ct)

u z

Fluid simulation
PIC simulation

spurious injection

Cormier-Michel et al., Phys. Rev. E 78, 016404 (2008)

→ Spurious (unphysical) particle injection

“Filamented” 
structure
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Temperature of the plasma behind the laser (initially the plasma is cold)

ξ=k
p
(z-ct)

σ2
uz

 (ξ) = <(u
z
-<u

z
>)2> ≈ k

B
T/mc2

PIC simulations of LPAs show unphysical kinetic
heating (≠ grid heating)/2

→ faster growth than “standard” grid heating* (unresolved λ
D
);   

→ temperatures greatly exceeds the value for which k
g
λ

D
 ~ 1;

→ origin not well understood (but clearly related to interpolation, resolution, 
    particle sampling, etc.);

λ
D
= (k

b
T/4πn

0
e2)1/2

k
g
= 2π/Δz

*C. K. Birdsall and A. B. Langdon, Plasma Physics Via Computer Simulation (Adam-Hilger, 1991) 28



Changing resolution Δz (N
ppc

=400, linear interpolation)

k
p
(z-ct)

Δ
z
=λ

0
/30

OK
reduced injection

Δ
z
=λ

0
/60

injection ?

k
p
(z-ct)

OK

→ Computational cost ~ Δz-2

Reducing the spurious kinetic heating by increasing the
resolution
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Changing the number of PPC (Δz =1/30, linear interpolation)

k
p
(z-ct) k

p
(z-ct)

Nppc = 100 Nppc = 400

OK

reduced 
injection

→ Computational cost ~ Nppc

Reducing the spurious kinetic heating by increasing the
number of particles per cell
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Changing shape-function (Nppc=400, Δz=λ
0
/30)

g
0 
(linear interpolation)

k
p
(z-ct) k

p
(z-ct)

g
1 
(quadratic interpolation)

→ Computational cost ~ (n+2)d

Reducing the spurious kinetic heating by increasing the
order of the shape function
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Temperature in the plasma for different laser intensities (Nppc=400, Δz=λ
0
/36)

Spurious kinetic heating stronger at higher laser
intensity

ξ=k
p
(z-ct)

- a
0
=3

- a
0
=2

- a
0
=1
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● Plasma momentum spread increases rapidly as a function of distance
behind the drive laser pulse even when it shouldn't;

● Spurious heating much faster than conventional grid heating in thermal 
plasmas, final “temperature” much higher;

● Particle phase space develops a complex “filamented” structure;

● Numerical particle orbits develop errors in momentum/position compared 
to the fluid orbit;

● Affects self-injection dynamics;

● Spurious kinetic heating can be controlled by increasing resolution, 
increasing number particles per cell and increasing the order of the 
interpolation. However, very slow convergence for a large box (i.e., 
several plasma periods);
 

● Analysis performed in 1D but trends apply to 2D (and 3D). In 2D effect of 
laser polarization important.

Summary on spurious kinetic heating
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