Intense Laser Developments at the CLF

Advanced Summer School "Laser-Driven Sources of High Energy Particles & Radiation" 14th July 2017, Anacapri, Capri, Italy

STFC Rutherford Appleton Laboratory

Paul Mason

Centre for Advanced Laser Technology & Applications (CALTA) Central Laser Facility STFC Rutherford Appleton Laboratory OX11 0QX, UK paul.mason@stfc.ac.uk

SIS neutron source

Science & Technology Facilities Council Central Laser Facility

x-ray synchrotron

Vulcan Laser @ CLF

Nd:glass CPA 1053 nm
6 x kJ, ns beam lines
2 x PW, 500 fs beam lines
1 shot every 20 mins

Applications

- Ignition studies
- e⁻, p⁺ & ion acceleration
 - UV to γ-ray & n⁰ generation

centra/ or

10 ps pulse

100 µm Ta foil target Active Csl detector Standoff ~ 2.5 m Resolution <<1mm

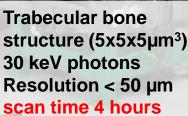
Low density imaging inside 1 mm thick Al box

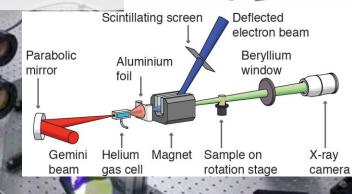
Single-shot x-ray radiography

Brenner *et al*, Plasma Phys. Controlled Fusion <u>58</u>, 014039 (2016)

Danson et al, J. Nucl. Fusion 44 S239 (2004)

Gemini Laser @ CLF




- Ti:sapphire CPA 800 nm
 - 2 x 15 J, 30 fs beam lines
 - 0.5 PW each
- 1 shot every 20 secs

Applications

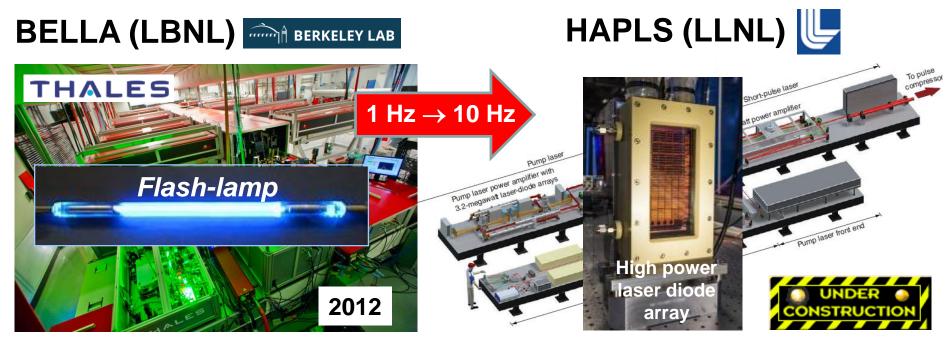
e⁻, p⁺ & ion acceleration UV to γ-ray generation

High power laser can drive a **compact** electron accelerator for applications including *"tabletop synchrotron*"

Imperial College

X-ray tomography scan

london


Cole et al, Scientific Reports 5, 13244 (2015)

Science & Technology Facilities Council Central Laser Facility

Hooker et al, Rev. of Laser Eng. 37, 6 (2009)

Coming Soon PW lasers @ 10 Hz

Flash lamp pumping

- Ti:sapphire CPA
- 40 J, 30 fs, 1 Hz
- Cost: ~\$10M

Diode pumped solid-state laser (DPSSL)

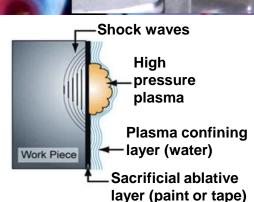
- Ti:sapphire CPA
- 30 J, 30 fs, 10 Hz
- 4.6m x 17m, Cost: \$45M

http://newscenter.lbl.gov/2012/07/27/bella-laser-record-power/ https://www.llnl.gov/news/llnl-meets-key-milestone-deliveryworlds-highest-average-power-PW-laser-system

Science & Technology Facilities Council Central Laser Facility

<u>Centre for Advanced Laser Technology &</u> <u>Applications (CALTA)</u>

Laboratory science \rightarrow Practical applications


Dipole

- Efficient DPSSL amplifier technology
- Cryo-cooled Yb:YAG 1030 nm
- 10 to 100 J, ns pulses
- 10 shots per second

Applications

- Next generation pump for PWclass (OP)CPA lasers
- Industrial materials processing
 - Laser shock peening

Laser-driven shock waves Compressive stress Plastic deformation Improved fatigue resilience

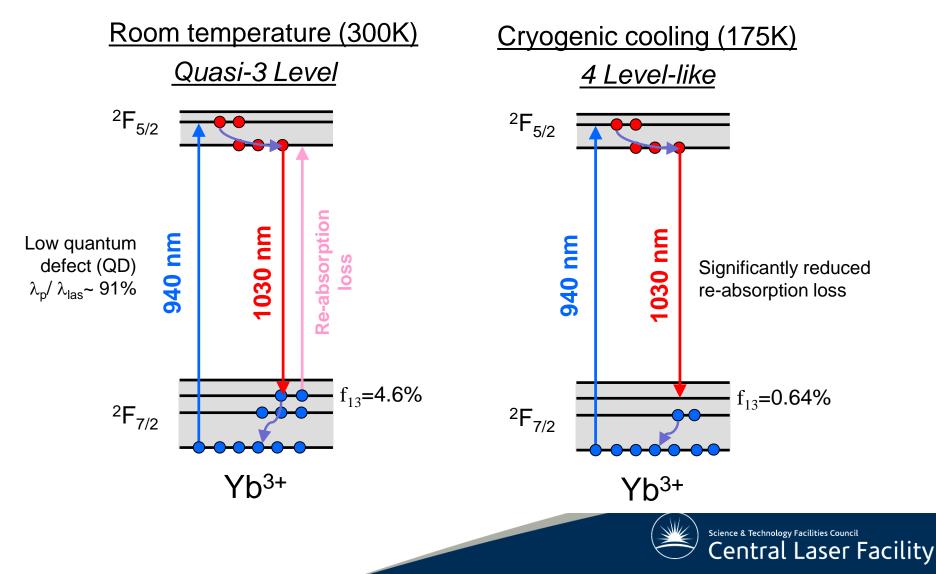
Kalainathan *et al*, Optics & Laser Tech. <u>81</u>, (2016)

Why Yb-doped YAG ?

		[1
Parameter (at RT)	Glass	S-FAP	YAG	CaF ₂
Wavelengths (pump/emission in nm)	940-980 / 1030	900 / 1047	940 / 1030	940-980 / 1030
Fluorescence lifetime (ms)	~ 2.0	~ 1.3	~ 1.0	~ 2.4
Emission cross-section (peak x10 ⁻²⁰ cm ²)	0.7	6.2	3.3	0.5
Gain	Low	High	Medium	Low
Non-linear index (n ₂ x 10 ⁻¹³ esu)	0.1 to 1.2	1.5	2.7	0.43
Bandwidth	High > 50 nm	Low	OK?	High > 50 nm
Availability of large aperture	Good	Limited	OK (Ceramic)	Limited (Ceramic)
Thermal properties (K in Wm ⁻¹ K ⁻¹)	Poor 1.0	OK 2.0	Good 10.5	OK 6.1

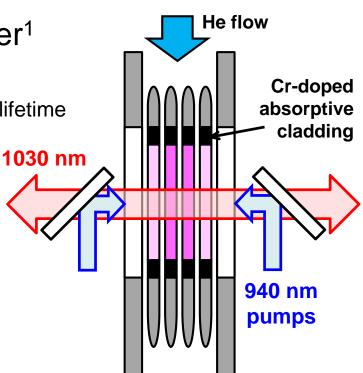
Best compromise

Good


OK

Poor

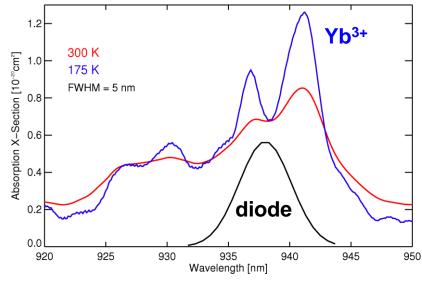
Why Cryogenic Cooling?

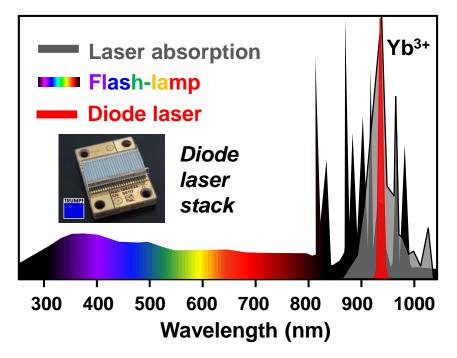

• Significantly reduced re-absorption loss

DiPCryo-Amplifier Concept

- Diode end-pumped multi-slab amplifier¹
 - Ceramic Yb:YAG gain medium
 - Low quantum defect (91%), long fluorescence lifetime (1 ms), ceramic scalable in size
 - Composite structures ASE suppression
- Graded doping profile
 - Equalised heat load in each slab
- Face-cooled by cryogenic He gas
 - Improved efficiency & gain cross-section
 - Significantly reduced reabsorption loss
 - Emission x-section ~ 2 x RT
 - Better thermo-optical & thermo-mechanical²
 - Thermal conductivity (100K) ~ 4 x RT
 - dn/dT (100K) ~ 8 x smaller than RT
- Scalable design (10 J, 100 J & 1 kJ)

¹Mason *et al*, Applied Optics <u>54</u>, 4227 (2015) ²Aggarwal et al, J. Appl. Phys. <u>98</u>, 103514 (2005)

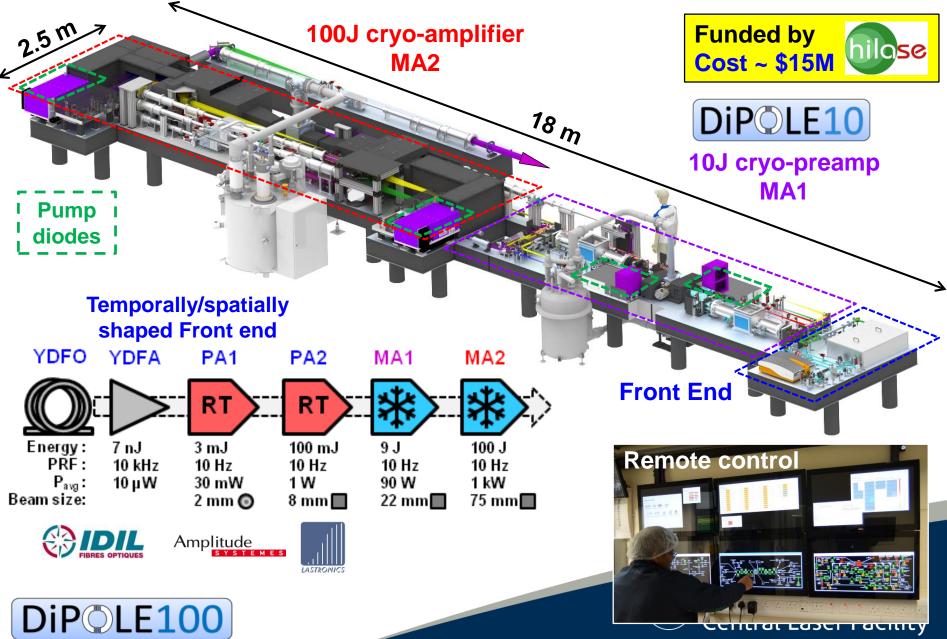




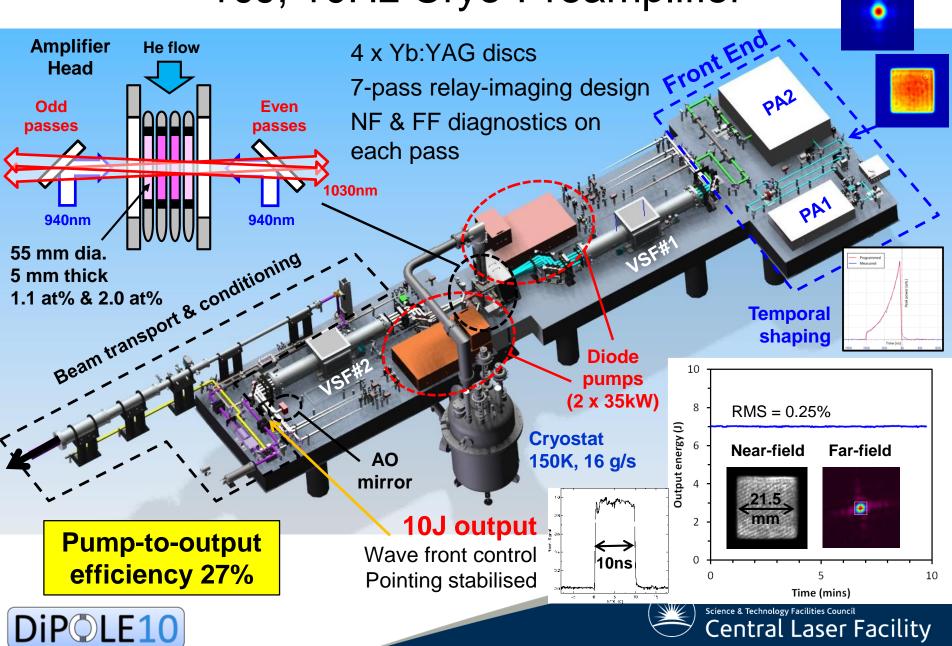
Why Diode Pumping?

- Diode spectrum better matched to laser absorption
 - Improved efficiency
 - Reduced thermal load
 - Enhanced by cryo-cooling^{1,2}

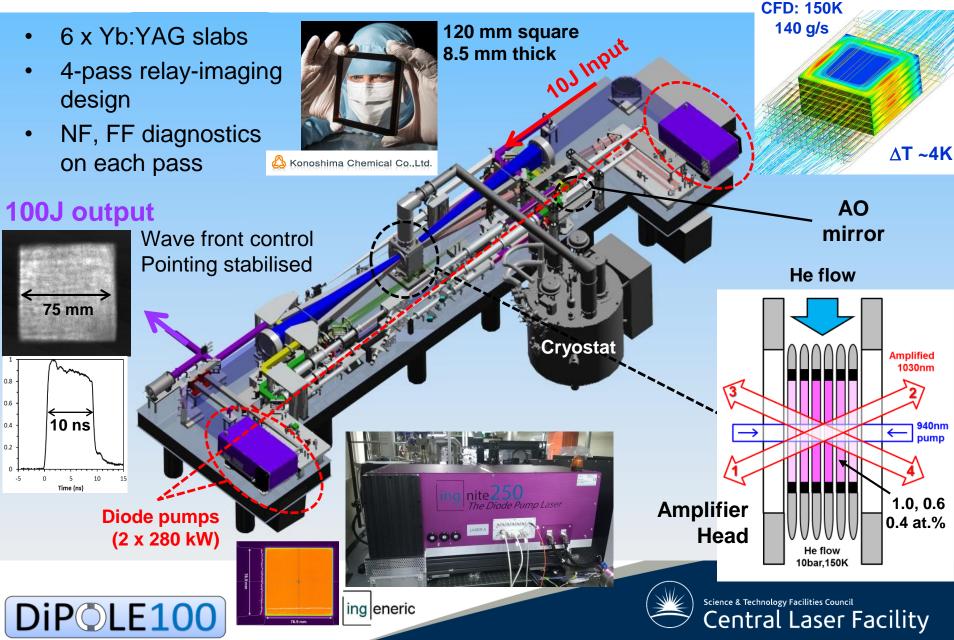
High brightness


- Longer lifetime
 - Billions of shots
 - Higher pulse rates
 - Redundancy
- Efficient coupling & uniform shaped profile

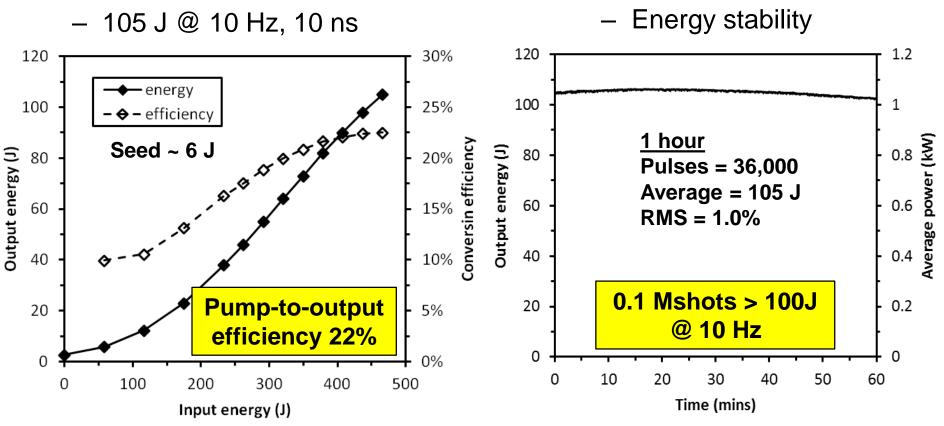
¹Brown et al, IEEE J. of Select. Topics in Quant. Elect. <u>11</u>, No.3 (2005) ²Ertel et al, Optics Express, <u>19</u>, No. 27, 26610 (2011)



Science & Technology Facilities Council Central Laser Facility


DiPOLE100 Architecture

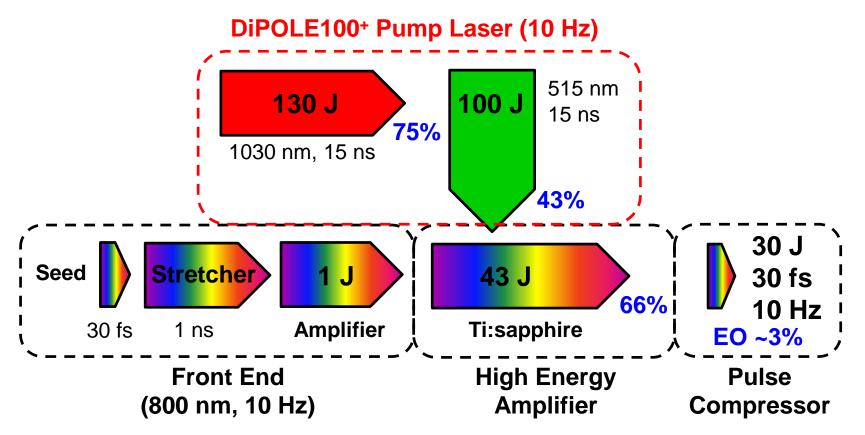
10J, 10Hz Cryo-Preamplifier


100J, 10Hz Cryo-Amplifier

DiPOLE100 @ HiLASE

Operational December 2016

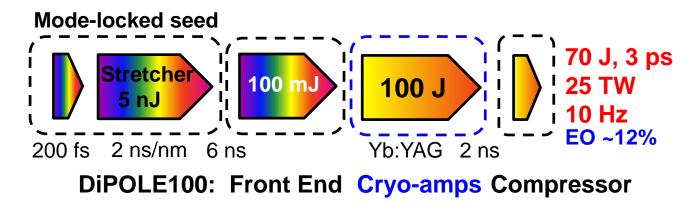
• First kW average power high-energy DPSSL


Operational DiPOLE Systems

Parameter	DiPOLE10	DiPOLE100	
Wavelength	1029.5 nm		
Pulse energy	9 J	107 J	
Energy stability	0.3% RMS	\leq 1% RMS	
Pulse rate	10 Hz		
Average power	90 W	> 1 kW	
Run time	> 50 hr (~2 Mshots)	> 2.5 hr (~0.1 Mshots)	
Efficiency (o-o)	27%	22%	
Pulse duration	Shaping @ 10 ns	10 ns	
Beam shape	Square SG (order ~10)		
Beam size	22 mm	75 mm	
Pointing stability	$\pm 15 \mu rad PV < 4\% RMS$		

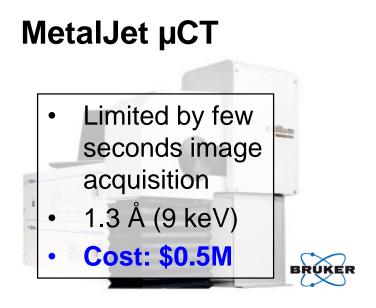
Proposed Gemini Facility Upgrade @ CLF

• 10 Hz PW Ti:S indirect CPA laser: 30 J, 30 fs, 10 Hz

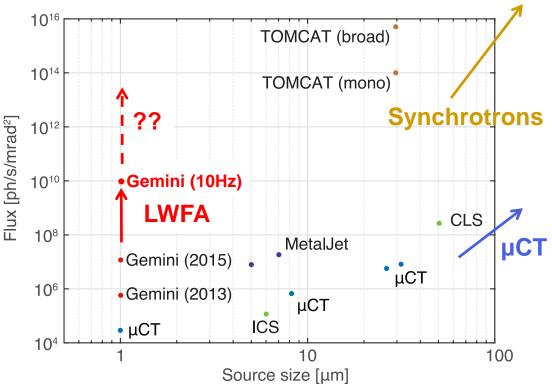


- Technical design report completed
 - Published soon
 - Funding being sought

ps-DiPOLE


- Direct CPA in cryo-cooled Yb:YAG
- Architecture
 - Mode-locked fs seed source
 - Grating or cFBG stretcher + spectral shaping
 - Existing DiPOLE100 cryo amplifier chain

- Reduced complexity & improved efficiency
 - Potential applications

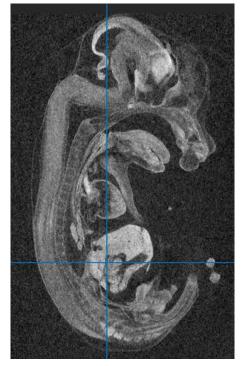


Lab-Scale X-ray Source Technology

Inverse Compton Scatter

Gemini LWFA (Betatron)

- Flux competitive with lab-scale sources
- Scales to higher flux @ same source size
- Limited by pulse rate: Cost \$5M


Practical X-ray Imaging System Design

- Laser (333 TW)
 - 30 fs, 10 J, \geq 30 Hz (DPSSL pump ~ 30 J)
- X-ray imaging source
 - \geq 30 fps, sub-micron resolution
 - 0.4 Å (35 keV) phase contrast

Small footprint & low cost (few \$M)

- Driven by applications
 - Rapid tomographic imaging
 - Low dose phase contrast radiography
- Commercialisation
 - Improvements in reliability & robustness

β**CT image mouse embryo** Good resolution & SNR

Summary & Future Plans

LWFA compact accelerators can generate extreme brightness short pulse x-rays for radiography

High power lasers are constantly improving

- Second DiPOLE100 for European XFEL HiBE
 - Closed-loop temporal shape control
 - Completion summer 2018
- Funded DiPOLE development (5 years)
 - Scaling energy (~ 150 J) & PRF (10 J @ 100 Hz)
 - Second & third harmonic generation
- New DPSSL-based laser designs
 - PW-class indirect CPA & ps direct CPA
- Compactisation
 - New geometries & cooling schemes

Science & Technology

EPSR

SHG in LBO 5 J @ 10 Hz >80%, 7 J/cm² 0.7% RMS

DiPOLE100 @ HiLASE

Thank you Any questions?

hila<mark>se</mark>