Advanced modeling tools for laserplasma accelerators (LPAs) 1/3

Carlo Benedetti
LBNL, Berkeley, CA, USA
(with contributions from R. Lehe, J.-L. Vay, T. Mehrling)

Advanced Summer School on

"Laser-Driven Sources of High Energy Particles and Radiation"

Work supported by Office of Science, Office of HEP, US DOE Contract DE-AC02-05CH11231

Course overview

- 3 lectures: Monday, Tuesday, Thursday
- Topics:
- [1] The Particle-In-Cell (PIC) method as a tool to study laserplasma interaction in LPAs;
- [2] Limits/challenges of conventional PIC codes;
- [3] Tools to speed-up the modeling of LPAs (Lorentz-boosted frame, quasi-static approximation, Fourier-mode decomposition, ponderomotive guiding center description, etc.);

Overview of lecture 1

- Basic physics of laser-plasma accelerators (LPAs);
- The Vlasov-Maxwell (V-M) equations system;
- The PIC approach to solve V-M equations system:
- Numerical particles;
- The PIC loop;
- Force interpolation and current deposition;
- Pushing "numerical" particles;
- Solving Maxwell's equations on a grid;

LPA as compact accelerators

Short and intense laser propagating in a plasma:

- short $\rightarrow \mathrm{T}_{0}=\mathrm{L}_{0} / \mathrm{c} \sim \lambda_{\rho} / \mathrm{c}$ (tens of fs)
- intense $\rightarrow \mathrm{a}_{0}=\mathrm{e} \mathrm{A}_{0} / \mathrm{mc}^{2} \sim 1\left(\lambda_{0}=0.8 \mathrm{um}, \mathrm{I}_{0}>10^{18} \mathrm{~W} / \mathrm{cm}^{2}\right)$

Plasma wavelength:
$\lambda_{p} \sim n_{0}{ }^{-1 / 2} \approx 10-100 \mu \mathrm{~m}$, for $n_{0} \approx 10^{19}-10^{17} \mathrm{~cm}^{-3}$

Δ = ponderomotive force:

$$
\mathrm{F}_{\mathrm{p}} \sim-\operatorname{grad}\left[\mathrm{l}_{\text {laser }}\right]
$$

$\rightarrow F_{p}$ displaces electrons
(but not the ions) creating charge separation from which EM fields arise

LPAs produce 1-100 GV/m accelerating gradients + confining forces

Electron bunches to be accelerated in an LPA can be obtained from background plasma

Limits to energy gain in a (single stage) LPA

- Iaser diffraction (~ Rayleigh range)
\rightarrow mitigated by guiding: plasma channel and/or self-focusing/self-guiding
- beam-wave dephasing:

$$
\begin{aligned}
& \beta_{\text {bunch }} \approx 1, \beta_{\text {wave }} \approx 1-\lambda_{0}^{2} /\left(2 \lambda_{p}^{2}\right) \\
& \rightarrow \text { slippage } L_{d} \approx\left(\lambda_{p} / 4\right) /\left(\beta_{\text {bunch }}-\beta_{\text {wave }}\right) \sim n_{0}^{-3 / 2}
\end{aligned}
$$

\rightarrow mitigated by longitudinal density tailoring

- laser energy depletion \rightarrow energy loss into plasma wave excitation, $L_{p d} \sim n_{0}^{-3 / 2}$

$$
\left(L_{p d} \approx 1 \mathrm{~cm} \text { for } n_{0}=10^{18} \mathrm{~cm}^{-3}\right)
$$

Interaction length $\sim n_{0}^{-3 / 2}$
Acc. gradient $\sim n_{0}{ }^{1 / 2}$
\rightarrow Energy gain $\sim n_{0}{ }^{-1}$

Schematic of a "typical" LPA experiment + modeling needs

Laser pulse ["known"]

Plasma target (gas-jet, gas cell, capillary, etc..):

- Gas dynamics (gas target formation; ~ms scalr)
- Plasma formation (discharge, MHD; 1 ns - 100 ns scale)
- Laser-plasma interaction (laser evolution in the plasma, wake formation and evolution, [self-]injection, bunch dynamics; $\sim f s \rightarrow \sim$ ps scale)

Diagnostics:

- laser (e.g., laser mode, spectrum, etc.)
- bunch (charge,
spectrum,
divergence, etc.)
- radiation (betatron, etc.)

Bunch transport (transport optics, etc.)

Schematic of a "typical" LPA experiment + modeling needs

Laser pulse ["known"]

Plasma target (gas-jet, gas cell, capillary, etc..):

- Gas dynamics (gas target formation; ~ms scalr)
- Plasma formation (discharge, MHD; 1 ns - 100 ns scale)
- Laser-plasma interaction (laser evolution in the plasma, wake formation and evolution, [self-]injection, bunch dynamics; $\sim f s \rightarrow \sim$ ps scale)
\leftarrow Computationally expensive part!

Diagnostics:

- laser (e.g., laser mode, spectrum, etc.)
- bunch (charge,
spectrum,
divergence, etc.)
- radiation (betatron, etc.)

Bunch transport (transport optics, etc.)

Laser-plasma interaction physics in LPAs described via Maxwell-Vlasov equations

- Statistical* description for the plasma in the 6D (r,p) phase-space \rightarrow phase-space distribution function $f_{s}(\mathbf{r}, \mathbf{p}, \mathrm{t}) \mathrm{drdp}=\#$ particles ($\mathrm{s}=$ electron, ion) located between \mathbf{r} and $\mathbf{r}+d \mathbf{r}$ with a momentum between \mathbf{p} and $\mathbf{p}+d \mathbf{p}$ at time t
- Evolution of the distribution \rightarrow Vlasov equation (collisionless plasma)

$$
\left.\frac{\partial f_{s}}{\partial t}+\mathbf{v} \cdot \frac{\partial f_{s}}{\partial \mathbf{r}}+q_{s}\left(\mathbf{E}+\frac{v}{c} \times \mathbf{B}\right) \cdot \frac{\partial f_{s}}{\partial \mathbf{p}}=0 \quad\right\} \begin{aligned}
& \text { Plasma } \\
& \text { dynamics }
\end{aligned}
$$

- Evolution of the fields $\mathbf{E}(\mathbf{r}, \mathrm{t}), \mathbf{B}(\mathbf{r}, \mathrm{t}) \rightarrow$ Maxwell equations

$$
\left.\frac{\partial \mathbf{B}}{\partial t}=-c \nabla \times \mathbf{E} \quad \frac{\partial \mathbf{E}}{\partial t}=c \nabla \times \mathbf{B}-4 \pi \mathbf{J}\right\} \begin{aligned}
& \text { Laser }+ \text { Wakefield } \\
& \text { dynamics }
\end{aligned}
$$

- Coupling between Vlasov \leftrightarrow Maxwell

$$
\mathbf{J}=\sum_{s} q_{s} \int \mathbf{v} f_{s}(\mathbf{p}, \mathbf{r}, t) d \mathbf{p} \quad \mathrm{n}(\mathbf{r}, \mathrm{t})=\int \mathrm{f}_{\mathrm{s}}(\mathbf{r}, \mathbf{p}, \mathrm{t}) \mathrm{d}^{3} \mathrm{p}
$$

Numerical solution of $\mathrm{M}-\mathrm{V}$ equations requires using grids (spatial, phase-space) to represent physical quantities

- E.g., 3D grid for density

Use of a moving computational box greatly reduces memory requirements for LPA simulations

Fixed grid

Numerical solution of the Maxwell-Vlasov equations: direct solution

- Direct numerical solution of MV equations is unfeasible
$\mathrm{E}(\mathbf{r}), \mathrm{B}(\mathbf{r}), \mathrm{J}(\mathbf{r}), \ldots \rightarrow$ discretized on a 3D spatial grid
$\mathrm{f}_{\mathrm{s}}(\mathbf{r}, \mathbf{p}, \mathrm{t}) \rightarrow$ discretized on a 6D $=3 \mathrm{D}$ (space) \times 3D (momentum) phase-space grid
Ex: Plasma: $\mathrm{n}_{0} \sim 10^{18} \mathrm{~cm}^{-3} \rightarrow \lambda_{\mathrm{p}} \sim 30 \mathrm{um}$
Laser: $\lambda_{0} \sim 1 \mathrm{um}, \mathrm{L}_{0} \sim 10 \mathrm{um}, \mathrm{w}_{0} \sim 30 \mathrm{um}$

3D spatial grid:
$L_{x} \sim L_{y} \sim L_{z} \sim 100$ um [a few plasma lengths]
$\Delta x \sim \Delta y \sim \lambda_{p} / 60$ [transverse]
$\Delta z \sim \lambda_{0} / 30$ [longitudinal]
$\mathrm{N}_{\mathrm{x}} \sim \mathrm{N}_{\mathrm{y}} \sim 200, \mathrm{~N}_{\mathrm{z}} \sim 3000$
$\mathrm{N}_{3 \mathrm{D}}=\mathrm{N}_{\mathrm{x}}{ }^{*} \mathrm{~N}_{\mathrm{y}}{ }^{*} \mathrm{~N}_{z} \sim 1.2 \times 10^{8}$ points
$\mathrm{N}_{6 \mathrm{D}}=\mathrm{N}_{3 \mathrm{D}}{ }^{*} \mathrm{~N}_{\mathrm{px}}{ }^{*} \mathrm{~N}_{\mathrm{py}}{ }^{*} \mathrm{~N}_{\mathrm{pz}} \sim 2 \times 10^{16}$ points

3D momentum grid:
$\mathrm{L}_{\mathrm{px}} \sim \mathrm{L}_{\mathrm{py}} \sim 10 \mathrm{mc}$ [transverse]
$\mathrm{L}_{\mathrm{pz}} \sim 2000 \mathrm{mc}$ [longitudinal]
$\Delta \mathrm{px} \sim \mathrm{py} \sim \Delta \mathrm{pz} \sim \mathrm{mc} / 10$ [transverse]
$\mathrm{N}_{\mathrm{px}} \sim \mathrm{N}_{\mathrm{py}} \sim 100, \mathrm{~N}_{\mathrm{pz}} \sim 20000$
\rightarrow Representing 1 double precision quantity
$\left(f_{s}\right)$ on a grid with N_{60} points requires $>\underline{\mathbf{2 0 0}}$
PBytes of memory ==> UNFEASIBLE!!!

Numerical solution of the Maxwell-Vlasov equations: particle method (PIC)/1

- Vlasov equation solved using a particle method (+ 3D spatial grid for the fields)
$f_{s}(\mathbf{r}, \mathbf{p}, \mathrm{t})=\left(1 / \mathrm{N}_{\mathrm{s}}\right) \sum_{k} \mathrm{~g}\left[\mathbf{r}-\mathbf{r}_{k}(\mathrm{t})\right] \delta\left[\mathbf{p}-\mathbf{p}_{k}(\mathrm{t})\right]$

Particle "shape"
(finite spatial extent)
$p^{\wedge} \quad f_{s}(r, p, t)$
$\mathrm{g} \rightarrow$ "compact support" function $\int \mathrm{g}(\mathbf{r}) \mathrm{d} \mathbf{r}=1$
$\delta \rightarrow$ Dirac function
$\mathrm{N}_{\mathrm{s}} \rightarrow$ \# "numerical" particles
$\mathbf{r}_{k}(\mathrm{t}), \mathbf{p}_{k}(\mathrm{t}) \rightarrow$ phase-space orbit of the k-th "numerical" particle (Vlasov characteristic)

r
r

Numerical solution of the Maxwell-Vlasov equations: particle method (PIC)/2

- Equation for the characteristics of the Vlasov equation

$$
\begin{aligned}
& \frac{\partial f_{s}}{\partial t}+\mathbf{v} \cdot \frac{\partial f_{s}}{\partial \mathbf{r}}+q_{s}\left(\mathbf{E}+\frac{v}{c} \times \mathbf{B}\right) \cdot \frac{\partial f_{s}}{\partial \mathbf{p}}=0 \\
& f_{s}(\mathbf{r}, \mathbf{p}, \mathrm{t})=\left(1 / \mathrm{N}_{\mathrm{s}}\right) \sum_{k} \mathrm{~g}\left[\mathbf{r}-\mathbf{r}_{\mathrm{k}}(\mathrm{t})\right] \delta\left[\mathbf{p}-\mathbf{p}_{k}(\mathrm{t})\right] \\
& \} \rightarrow \\
& \mathrm{d}_{\mathrm{k}} / \mathrm{dt}=\mathbf{v}_{\mathrm{k}}=\mathbf{p}_{\mathrm{k}} / \mathrm{m} \gamma_{\mathrm{k}} \\
& d p_{k} / d t=q_{s}\left[E_{k}+\left(\mathbf{v}_{k} / c\right) B_{k}\right] \\
& \text { where } E_{k}=\int E(r) g\left(r-r_{k}\right) d r \text {, } \\
& B_{k}=\int B(r) g\left(r-r_{k}\right) d r
\end{aligned}
$$

==> evolution of f_{s} described via the motion of a "swarm" of numerical particles

- Expressing the current density using numerical particles

$$
\mathbf{J}=\sum_{s} q_{s} \int \mathbf{v} f_{s}(\mathbf{p}, \mathbf{r}, t) d \mathbf{p} \longrightarrow \mathbf{J}=\sum_{\mathrm{s}}\left(\mathrm{q}_{\mathrm{s}} / \mathrm{N}_{\mathrm{s}}\right) \sum_{\mathrm{k}=0, \mathrm{Ns}} \mathbf{v}_{\mathrm{k}} \mathrm{~g}\left[\mathbf{r}-\mathbf{r}_{\mathrm{k}}(\mathrm{t})\right]
$$

Numerical solution of the Maxwell-Vlasov equations: particle method (PIC)/3

- Example of particle shapes: $g(r)=g_{x}(x) g_{y}(y) g_{z}(z)$

Numerical particles on the spatial grid
("clouds" of charge)

\rightarrow describes interaction particles \leftrightarrow grid
\rightarrow finite spatial extension (to limit number of calculations)
\rightarrow type of shape controls noise in simulation (higher order reduces noise)

Memory requirements for the solution of MaxwellVlasov equations using the PIC technique

Plasma: $\mathrm{n}_{\mathrm{o}} \sim 10^{18} \mathrm{~cm}^{-3} \rightarrow \lambda_{\mathrm{p}} \sim 30 \mathrm{um}$
Laser: $\lambda_{0} \sim 1 \mathrm{um}, \mathrm{L}_{0} \sim 10 \mathrm{um}, \mathrm{w}_{0} \sim 30 \mathrm{um}$
3D spatial grid:
$L_{x} \sim L_{y} \sim L_{z} \sim 100$ um [a few plasma lengths]
$\Delta x \sim \Delta y \sim \lambda_{p} / 60$ [transverse]
$\Delta z \sim \lambda_{0} / 30$ [longitudinal]
$\mathrm{N}_{\mathrm{x}} \sim \mathrm{N}_{\mathrm{y}} \sim 200, \mathrm{~N}_{\mathrm{z}} \sim 3000$

$$
N_{3 D}=N_{x}{ }^{*} N_{y}{ }^{*} N_{z} \sim 1.2 \times 10^{8} \text { points }
$$

Particles:
$\mathrm{N}_{\mathrm{ppc}}=1-100$

$$
\mathrm{N}_{\mathrm{tot}}=\mathrm{N}_{3 \mathrm{D}}{ }^{*} \mathrm{~N}_{\mathrm{ppc}} \sim 10^{8}-10^{10} \text { particles }
$$

Grid \rightarrow (9 fields) \times (8 bytes) $\times \mathrm{N}_{3 \mathrm{D}} \sim 7$ GBytes
Particles \rightarrow (6 coordinates) \times (8 bytes) $\times N_{\text {tot }} \sim(5-500)$ GBytes

Memory requirements OK!!!

Edison @ NERSC (105 CPUs) = 360 TBytes, 2.6 Pflops/s

Resolution in momentum space depends on number of "numerical" particles per cell

The PIC loop: self-consistent solution of Maxwell-Vlasov equations

Initial condition \rightarrow

Load initial EM
fields on the grid

Load initial
particle distribution

Force interpolation

$$
(E, B)_{i, j}>F_{k}
$$

Evolve E, B (solution of
Maxwell's equations)

$$
\frac{\partial \mathbf{B}}{\partial t}=-c \nabla \times \mathbf{E} \quad \frac{\partial \mathbf{E}}{\partial t}=c \nabla \times \mathbf{B}-4 \pi \mathbf{J}
$$

Push particle

$$
\left\{\begin{array}{l}
\frac{d \mathbf{r}_{i}}{d t}=\mathbf{v}_{i} \equiv \frac{\mathbf{p}_{i}}{m_{i \gamma},} \\
\frac{d p_{i}+}{d t}=q_{i}\left(\mathbf{E}\left(\mathbf{r}_{i}, t\right)+\frac{\mathbf{v}_{i}}{c} \times \mathbf{B}\left(\mathbf{r}_{i}, t\right)\right)
\end{array}\right.
$$

The PIC loop: self-consistent solution of Maxwell-Vlasov equations

Initial condition \rightarrow

Load initial EM
fields on the grid

Load initial
particle distribution

Evolve E, B (solution of
Maxwell's equations)

$$
\frac{\partial \mathbf{B}}{\partial t}=-c \nabla \times \mathbf{E} \quad \frac{\partial \mathbf{E}}{\partial t}=c \nabla \times \mathbf{B}-4 \pi \mathbf{J}
$$

Push particle

$$
\left\{\begin{array}{l}
\frac{d \mathbf{r}_{i}}{d i}=\mathbf{v}_{i}=\frac{\mathbf{p}_{i}}{m_{i}, \gamma_{2}}, \\
\frac{d \mathbf{p}_{i}}{d t}=q_{i}\left(\mathbf{E}\left(\mathbf{r}_{i}, t\right)+\frac{\mathbf{v}_{i}}{c} \times \mathbf{B}\left(\mathbf{r}_{i}, t\right)\right)
\end{array}\right.
$$

Current deposition

$$
\left(r_{k^{\prime}} p_{k}\right) \rightarrow J_{i, j}
$$

Force interpolation: grid \rightarrow particle [1D]

$$
E_{k}=\int E(x) g\left(x-q_{k}\right) d x
$$

$$
g_{0}(x)= \begin{cases}1 / \Delta_{x} & |x|<\Delta_{x} / 2 \\ 0 & |x|>\Delta_{x} / 2\end{cases}
$$

$$
\begin{gathered}
\eta=\left(q_{k}-x_{i}\right) / \Delta_{x} \\
<E>\left(x=q_{k}\right)=(1-\eta) E_{i}+\eta E_{i+1}
\end{gathered}
$$

$$
\text { if } q_{k}=x_{i} \rightarrow\langle E\rangle=E_{i}
$$

$$
\text { if } q_{k}=x_{i+1 / 2} \rightarrow\langle E\rangle=\left(E_{i}+E_{i+1}\right) / 2
$$

$$
\text { if } \mathrm{q}_{\mathrm{k}}=\mathrm{x}_{\mathrm{i}+1} \rightarrow\langle\mathrm{E}\rangle=\mathrm{E}_{\mathrm{i}+1}
$$

The PIC loop: self-consistent solution of Maxwell-Vlasov equations

Initial condition \rightarrow

Load initial EM
fields on the grid

Load initial
particle distribution

Force interpolation

$$
(E, B)_{i, j}>F_{k}
$$

Evolve E, B (solution of
Maxwell's equations)

$$
\frac{\partial \mathbf{B}}{\partial t}=-c \nabla \times \mathbf{E} \quad \frac{\partial \mathbf{E}}{\partial t}=c \nabla \times \mathbf{B}-4 \pi \mathbf{J}
$$

Push particle

$$
\left\{\begin{array}{l}
\frac{d \mathbf{r}_{i}}{d t}=\mathbf{v}_{i} \equiv \frac{\mathbf{p}_{i}}{m_{i \gamma},} \\
\frac{d p_{i}}{d t}=q_{i}\left(\mathbf{E}\left(\mathbf{r}_{i}, t\right)+\frac{\mathbf{v}_{i}}{c} \times \mathbf{B}\left(\mathbf{r}_{i}, t\right)\right)
\end{array}\right.
$$

Current deposition: particle \rightarrow grid [1D]

$$
J_{i}=\frac{1}{\Delta_{x}} \int_{x_{i}-\Delta_{x} / 2}^{x_{i}+\Delta_{x} / 2} J(x) d x
$$

$$
g_{0}(x)= \begin{cases}1 / \Delta x & |x|<\Delta_{x} / 2 \\ 0 & |x|>\Delta_{x} / 2\end{cases}
$$

$$
\eta=\left(q_{k}-x_{i}\right) / \Delta_{x}
$$

==> Charge distributed between the grid points i and i+1

N.B. Using the same scheme to perform force interpolation and current deposition gives no self-force on the particle.

The PIC loop: self-consistent solution of Maxwell-Vlasov equations

Initial condition \rightarrow

Load initial EM fields on the grid

Load initial
particle distribution

Evolve E, B (solution of
Maxwell's equations)
$\frac{\partial \mathbf{B}}{\partial t}=-c \nabla \times \mathbf{E} \quad \frac{\partial \mathbf{E}}{\partial t}=c \nabla \times \mathbf{B}-4 \pi \mathbf{J}$
Force interpolation

$$
(E, B)_{i, j} \rightarrow F_{k}
$$

Major criteria to chose algorithms in a PIC code

Integration of Maxwell's equations and particle's equations of motion requires solving PDEs and ODEs \rightarrow discretized numerical solution

Properties of numerical schemes:

- Convergence \rightarrow the numerical solution goes to the analytical one if $\Delta_{x^{\prime}} \Delta_{y^{\prime}}$ Δ_{z} and Δ_{t} go to zero.
- Accuracy \rightarrow scaling of the truncation error with $\Delta_{x^{\prime}} \Delta_{y^{\prime}}, \Delta_{z}$ and Δ_{t}.
- Stability \rightarrow if total errors (truncation + round-off) grows in time then the scheme is unstable.
- Efficiency \rightarrow computational cost of the algorithm.
- Dissipation \rightarrow dissipation of some physical quantity due to truncation error.
- Conservation \rightarrow deviation of the conservation law caused by the truncation error.

Discretization of (spatial and temporal) derivatives

$x \rightarrow$ space or time variable $\Delta x \rightarrow$ discretization step $f(x) \rightarrow$ some function of x
 $(i-1 / 2) \Delta x \quad(i+1 / 2) \Delta x$

Derivatives of $\mathrm{f}(\mathrm{x})$ [using Taylor's expansion]:
$\left.\begin{array}{rl}\text { - } & d f /\left.d x\right|_{i}=\left(f_{i+1}-f_{i}\right) / \Delta x+O(\Delta x) \\ \text { - } d f /\left.d x\right|_{i}=\left(f_{i}-f_{i-1}\right) / \Delta x+O(\Delta x)\end{array}\right\} \begin{aligned} & 1^{\text {st }} \\ & \text { order }\end{aligned}$

- $d f /\left.d x\right|_{i}=\left(f_{i+1}-f_{i-1}\right) /(2 \Delta x)+O\left(\Delta x^{2}\right)$
- $\left.d f /\left.d x\right|_{i+1 / 2}=\left(f_{i+1}-f_{i}\right) / \Delta x+O\left(\Delta x^{2}\right)\right\} \begin{aligned} & 2^{\text {nd }} \\ & \text { order }\end{aligned}$
- $d f /\left.d x\right|_{i-1 / 2}=\left(f_{i}-\mathrm{f}_{\mathrm{i}-1}\right) / \Delta \mathrm{x}+\mathrm{O}\left(\Delta \mathrm{x}^{2}\right)$
\rightarrow centering easy way to construct $2^{\text {nd }}$ order scheme
\rightarrow time integration of an ODE requires at least a $2^{\text {nd }}$ order scheme in order to provide meaningful results

The PIC loop: self-consistent solution of Maxwell-Vlasov equations

Initial condition \rightarrow

Load initial EM
fields on the grid

Load initial
particle distribution

Force interpolation

$$
(E, B)_{i, j}>F_{k}
$$

Evolve E, B (solution of
Maxwell's equations)

$$
\frac{\partial \mathbf{B}}{\partial t}=-c \nabla \times \mathbf{E} \quad \frac{\partial \mathbf{E}}{\partial t}=c \nabla \times \mathbf{B}-4 \pi \mathbf{J}
$$

Current deposition

$$
\left(r_{k^{\prime}} p_{k}\right) \rightarrow J_{i, j}
$$

Particle pusher (2 ${ }^{\text {nd }}$ order "leapfrog" scheme)

$$
\begin{cases}\frac{d \mathbf{r}_{i}}{d t}=\mathbf{v}_{i} \equiv \frac{\mathbf{p}_{i}}{m_{i} \gamma_{i}}, & \text { Position and momentum are staggered } \\ \frac{\text { dp } \mathbf{p}_{i}}{d t}=q_{i}\left(\mathbf{E}\left(\mathbf{r}_{i}, t\right)+\frac{\mathbf{v}_{i}}{c} \times \mathrm{B}\left(\mathbf{r}_{i}, t\right)\right) & \text { in time } \rightarrow 2^{\text {nd }} \text { order accurate scheme! }\end{cases}
$$

$$
\begin{aligned}
& \left.(\mathrm{dp} / \mathrm{dt})^{\mathrm{n}} \rightarrow\left(\mathbf{p}^{\mathrm{n}+1 / 2}-\mathbf{p}^{\mathrm{n}-1 / 2}\right) / \Delta \mathrm{t}\right) \quad \text { Implicit equation! } \\
& \left.\mathbf{v}^{n} / c \rightarrow\left(\mathbf{p}^{n+1 / 2}+\mathbf{p}^{n-1 / 2}\right) /\left(2 m c \gamma^{n}\right)\right\} \quad \frac{p^{n+1 / 2}-\mathbf{p}^{n-1 / 2}}{\Delta t}=q\left(E^{n}+\frac{p^{n+1 / 2}+\mathbf{p}^{n-1 / 2}}{2 m c \gamma^{n}} \times \mathbf{B}^{n}\right) \\
& (\mathrm{dr} / \mathrm{dt})^{n+1 / 2} \rightarrow \frac{\mathrm{r}^{\mathrm{n}+1}-\mathbf{r}^{\mathrm{n}}}{\Delta \mathrm{t}}=\mathbf{v}^{\mathrm{n+1/2}}=\mathbf{p}^{\mathrm{n+1/2} /} /\left(\mathrm{m} \gamma^{\mathrm{n}+1 / 2}\right)
\end{aligned}
$$

Solution of momentum equation with Boris scheme (explicit)

Boris scheme ($2^{\text {nd }}$ order, time reversible) separates the contributions of electric and magnetic fields in the motion of the particle
\rightarrow (1) momentum change due to E ($1 / 2$ kick)

$$
\mathbf{p}^{\mathrm{n}-1 / 2} \rightarrow \mathbf{p}^{-}=\mathbf{p}^{\mathrm{n}-1 / 2}+\mathrm{q} \mathbf{E}^{\mathrm{n}}(\Delta \mathrm{t} / 2)
$$

$\rightarrow(2)$ rotation of \mathbf{p}^{-}due to \mathbf{B} (particle energy does not change)

$$
\begin{array}{rl}
\gamma^{\mathrm{n}}=\left[1+\left(\mathbf{p}^{-} / \mathrm{mc}\right)^{2}\right]^{1 / 2} & \mathbf{t}=\mathrm{q} \Delta t \mathbf{B}^{\mathrm{n}} / 2 \mathrm{mc} \gamma^{\mathrm{n}} \quad \mathbf{s}=2 \mathrm{t} /\left(1+|\mathbf{t}|^{2}\right) \\
\mathbf{p}^{\prime}=\mathbf{p}^{-}+\mathbf{p}^{-} \times \mathbf{t} & \mathbf{p}^{-} \rightarrow \mathbf{p}^{+}: \text {rotation around } \mathbf{B}^{\mathrm{n}} \text { by } \\
\mathbf{p}^{+}=\mathbf{p}^{-}+\mathbf{p}^{\prime} \times \mathbf{s} & \text { an angle arctan}\left[q \Delta t \mathbf{B}^{\mathrm{n}} / 2 \mathrm{mc} \gamma^{n}\right]
\end{array}
$$

$\rightarrow(3)$ momentum change due to $\mathrm{E}(1 / 2$ kick $)$

$$
\mathbf{p}^{+} \rightarrow \mathbf{p}^{n+1 / 2}=\mathbf{p}^{+}+\mathbf{q} \mathbf{E}^{n}(\Delta t / 2)
$$

The PIC loop: self-consistent solution of Maxwell-Vlasov equations

Initial condition \rightarrow

Load initial EM
fields on the grid

Load initial
particle distribution

Force interpolation

$$
(E, B)_{i, j}>F_{k}
$$

Evolve E, B (solution of
Maxwell's equations)
$\frac{\partial \mathbf{B}}{\partial t}=-c \nabla \times \mathbf{E} \quad \frac{\partial \mathbf{E}}{\partial t}=c \nabla \times \mathbf{B}-4 \pi \mathbf{J}$

Push particle

$$
\left\{\begin{array}{l}
\frac{d \mathbf{r}_{i}}{d t}=\mathbf{v}_{i} \equiv \frac{\mathbf{p}_{i}}{m_{i}, \gamma_{2}}, \\
\frac{d p_{i}+}{d t}=q_{i}\left(\mathbf{E}\left(\mathbf{r}_{i}, t\right)+\frac{\mathbf{v}_{i}}{c} \times \mathbf{B}\left(\mathbf{r}_{i}, t\right)\right)
\end{array}\right.
$$

Current deposition

$$
\left(r_{k^{\prime}} p_{k}\right) \rightarrow J_{i, j}
$$

Field solver (2 $2^{\text {nd }}$ order finite-difference time-domain "Yee" scheme): time discretization
$\left\{\begin{array}{l}\frac{\partial \mathbf{E}}{\partial t}=c \nabla \times \mathbf{B}-4 \pi \mathbf{J} \\ \frac{\partial \mathbf{B}}{\partial t}=-c \nabla \times \mathbf{E}\end{array}\right.$

$$
E^{n+1}=E^{n}+\Delta t\left[c \Delta x B^{n+1 / 2}-4 \pi J^{n+1 / 2}\right]
$$

$$
(\partial \mathrm{E} / \partial \mathrm{t})^{n+1 / 2} \rightarrow\left(\mathrm{E}^{n+1}-\mathrm{E}^{n}\right) / \Delta \mathrm{t}
$$

E \& B are staggered in time

$$
\frac{\partial \mathbf{E}}{\partial t}=c \nabla \times \mathbf{B}-4 \pi \mathbf{J} \quad \mathbf{E}^{n+1}
$$ $\rightarrow 2^{\text {nd }}$ order accurate scheme!

To push particle we need:

$$
\begin{gathered}
\frac{\partial \mathbf{B}}{\partial t}=-c \nabla \times \mathbf{E} \\
(\partial \mathbf{B} / \partial \mathrm{t})^{\mathrm{n}} \rightarrow\left(\mathbf{B}^{\mathrm{n+1/2}}-\mathbf{B}^{\mathrm{n}-1 / 2}\right) / \Delta \mathrm{t}
\end{gathered}
$$

curl $B^{n+1 / 2}$, curl E^{n} \rightarrow computed numerically on the grid

$$
B^{n}=\left(B^{n-1 / 2}+B^{n+1 / 2}\right) / 2 \quad \leftarrow \quad B^{n+1 / 2}=B^{n-1 / 2}-c \Delta t \Delta x E^{n}
$$

Field solver (2 ${ }^{\text {nd }}$ order finite-difference time-domain "Yee" scheme): space discretization

Rewriting Maxwell's equation in $1 \mathrm{D}\left(\mathrm{E}=\mathrm{E}_{x^{\prime}}, \mathrm{B}=\mathrm{B}_{\mathrm{y}}\right)$ and in vacuum $(\mathrm{J}=0) \quad[\mathrm{c} \Delta \mathrm{t}=\Delta \mathrm{T}]$

$$
\frac{\partial \mathbf{E}}{\partial t}=c \nabla \times \mathbf{B}
$$

$$
\frac{\partial \mathbf{B}}{\partial t}=-c \nabla \times \mathbf{E}
$$

Time discretization (2 $2^{\text {nd }}$ order)

$\left(B^{n+1 / 2}-B^{n-1 / 2}\right) / \Delta T=-\partial E /\left.\partial z\right|^{n}$
$\left(E^{n+1}-E^{n}\right) / \Delta T=-\partial B /\left.\partial z\right|^{n+1 / 2}$
$\left(E_{k}^{n+1}-E_{k}^{n}\right) / \Delta T=-\left(B^{n+1 / 2}{ }_{k+1 / 2}-B_{k-1 / 2}^{n+1 / 2}\right) / \Delta z$

E \& B are staggered in space

$$
\left(B^{n+1 / 2}{ }_{k+1 / 2}-B^{n-1 / 2}{ }_{k+1 / 2}\right) / \Delta T=-\left(E_{k+1}^{n}-E_{k}^{n}\right) / \Delta z
$$ $\rightarrow 2^{\text {nd }}$ order accurate scheme!

Field solver (Yee) in 3D: exploits spatial and temporal staggering of fields to obtain $2^{\text {nd }}$ order accurate scheme/1

=> Different components of the different fields are staggered, so that all derivatives in the Maxwell equations are centered

Field	Position in space and time				Notation
	x	y	z	t	
E_{x}	$\left(i+\frac{1}{2}\right) \Delta x$	$j \Delta y$	$k \Delta z$	$n \Delta t$	$E_{x+\frac{1}{2}, j, k}^{n}$
E_{y}	$i \Delta x$	$\left(j+\frac{1}{2}\right) \Delta y$	$k \Delta z$	$n \Delta t$	$E_{y_{i, j+\frac{1}{2}, k}^{n}}$
E_{z}	$i \Delta x$	$j \Delta y$	$\left(k+\frac{1}{2}\right) \Delta z$	$n \Delta t$	$E_{z i, j, k+\frac{1}{2}}^{n}$
B_{x}	$i \Delta x$	$\left(j+\frac{1}{2}\right) \Delta y$	$\left(k+\frac{1}{2}\right) \Delta z$	$\left(n+\frac{1}{2}\right) \Delta t$	$B_{x_{i, j+\frac{1}{2}, k+\frac{1}{2}}{ }^{n+\frac{1}{2}}{ }^{\text {a }} \text {, }}$
B_{y}	$\left(i+\frac{1}{2}\right) \Delta x$	$j \Delta y$	$\left(k+\frac{1}{2}\right) \Delta z$	$\left(n+\frac{1}{2}\right) \Delta t$	$B_{y_{i+\frac{1}{2}, j, k+\frac{1}{2}}}^{n+\frac{1}{2}}$
B_{z}	$\left(i+\frac{1}{2}\right) \Delta x$	$\left(j+\frac{1}{2}\right) \Delta y$	$k \Delta z$	$\left(n+\frac{1}{2}\right) \Delta t$	$B_{z_{i+\frac{1}{2}}^{2}, j+\frac{1}{2}, k}^{n+\frac{1}{2}}$

Field solver (Yee) in 3D: exploits spatial and temporal staggering of fields to obtain $2^{\text {nd }}$ order accurate scheme/2

Maxwell-Ampère

Maxwell-Faraday

$$
\begin{aligned}
& \left.\partial_{t} B_{x}\right|_{i, j+\frac{1}{2}, k+\frac{1}{2}} ^{n}=-\left.\partial_{y} E_{z}\right|_{i, j+\frac{1}{2}, k+\frac{1}{2}} ^{n}+\left.\partial_{z} E_{y}\right|_{i, j+\frac{1}{2}, k+\frac{1}{2}} ^{n} \\
& \left.\partial_{t} B_{y}\right|_{i+\frac{1}{2}, j, k+\frac{1}{2}} ^{n}=-\left.\partial_{z} E_{x}\right|_{i+\frac{1}{2}, j, k+\frac{1}{2}} ^{n}+\left.\partial_{x} E_{z}\right|_{i+\frac{1}{2}, j, k+\frac{1}{2}} ^{n} \\
& \left.\partial_{t} B_{z}\right|_{i+\frac{1}{2}, j+\frac{1}{2}, k} ^{n}=-\left.\partial_{x} E_{y}\right|_{i+\frac{1}{2}, j+\frac{1}{2}, k} ^{n}+\left.\partial_{y} E_{x}\right|_{i+\frac{1}{2}, j+\frac{1}{2}, k} ^{n}
\end{aligned}
$$

$$
\left.\left.\partial_{t} F\right|_{i^{\prime}, j^{\prime}, k^{\prime}} ^{n^{\prime}} \equiv \frac{F_{i^{\prime}, j^{\prime}, k^{\prime}}^{n^{\prime}+\frac{1}{2}}-F_{i^{\prime}, j^{\prime}, k^{\prime}}^{n^{\prime}-\frac{1}{2}}}{\Delta t} \quad \partial_{x} F\right|_{i^{\prime}, j^{\prime}, k^{\prime}} ^{n^{\prime}} \equiv \frac{F_{i^{\prime}+\frac{1}{2}, j^{\prime}, k^{\prime}}^{n^{\prime}}-F_{i^{\prime}-\frac{1}{2}, j^{\prime}, k^{\prime}}^{n^{\prime}}}{\Delta x}
$$

$$
\left.\left.\partial_{y} F\right|_{i^{\prime}, j^{\prime}, k^{\prime}} ^{n^{\prime}} \equiv \frac{F_{i^{\prime}, j^{\prime}+\frac{1}{2}, k^{\prime}}^{n^{\prime}}-F_{i^{\prime}, j^{\prime}-\frac{1}{2}, k^{\prime}}^{n^{\prime}}}{\Delta y} \quad \partial_{z} F\right|_{i^{\prime}, j^{\prime}, k^{\prime}} ^{n^{\prime}} \equiv \frac{F_{i^{\prime}, j^{\prime}, k^{\prime}+\frac{1}{2}}^{n^{\prime}}-F_{i^{\prime}, j^{\prime}, k^{\prime}-\frac{1}{2}}^{n^{\prime}}}{\Delta z}
$$

$$
\begin{aligned}
& \left.\partial_{t} E_{x}\right|_{i+\frac{1}{2}, j, k} ^{n+\frac{1}{2}}=\left.c^{2} \partial_{y} B_{z}\right|_{i+\frac{1}{2}, j, k} ^{n+\frac{1}{2}}-\left.c^{2} \partial_{z} B_{y}\right|_{i+\frac{1}{2}, j, k} ^{n+\frac{1}{2}}-\mu_{0} c^{2} j_{x+\frac{1}{2}, j, k}^{n+\frac{1}{2}} \\
& \left.\partial_{t} E_{y}\right|_{i, j+\frac{1}{2}, k} ^{n+\frac{1}{2}}=\left.c^{2} \partial_{z} B_{x}\right|_{i, j+\frac{1}{2}, k} ^{n+\frac{1}{2}}-\left.c^{2} \partial_{x} B_{z}\right|_{i, j+\frac{1}{2}, k} ^{n+\frac{1}{2}}-\mu_{0} c^{2} j_{y_{i, j+\frac{1}{2}, k}^{n+\frac{1}{2}}}^{n} \\
& \left.\partial_{t} E_{z}\right|_{i, j, k+\frac{1}{2}} ^{n+\frac{1}{2}}=\left.c^{2} \partial_{x} B_{y}\right|_{i, j, k+\frac{1}{2}} ^{n+\frac{1}{2}}-\left.c^{2} \partial_{y} B_{x}\right|_{i, j, k+\frac{1}{2}} ^{n+\frac{1}{2}}-\mu_{0} c^{2} j_{z}{ }_{i, j, k+\frac{1}{2}}^{n+\frac{1}{2}}
\end{aligned}
$$

What happens to $\operatorname{div} B=0$ and $\operatorname{div} E=4 \pi \rho$ equations?

- The (discretized) div $\mathbf{B}=0$ and div $\mathrm{E}=4 \pi \rho$ equations must be satisfied for $\mathrm{t}=0$ (consistent initial condition)
- If div $B=0$ is satisfied for $t=0$, then it remains satisfied at all times as long as B is evolved with the Faraday equation. This remains true when equations are discretized in space and time (provided that div curl = 0)
- If div $E=4 \pi \rho$ is satisfied for $t=0$ then it remains satisfied at all times if continuity equation (div $\mathrm{J}+\partial \rho / \partial \mathrm{t}=0$) holds
- Unfortunately, using direct charge and current deposition (i.e., J and ρ from numerical particles via shape-functions), the discretized version of the continuity equation is not satisfied (div $\mathrm{E} \neq 4 \pi \rho$):
- At each step correct E, namely $\mathbf{E}^{\prime}=\mathrm{E}-\mathrm{grad}[\delta \phi]$, so that div $\mathrm{E}^{\prime}=4 \pi \rho$ $\rightarrow \Delta(\delta \phi)=\operatorname{div} \mathbf{E}-4 \pi \rho$ [Boris correction];
- Construct J in such a way cont. equation is automatically satisfied [Esirkepov, 2001];

References

LPA physics:

- E. Esarey, C. B. Schroeder, and W. P. Leemans, Rev. Mod. Phys. 81, 1229 (2009)

PIC method:

- C. K. Birdsall and A. B. Langdon, Plasma Physics Via Computer Simulation (AdamHilger, 1991)
- J.-L. Vay and R. Lehe, Rev. Accl. Sci. Tech. 09, 165 (2016)
- Haugboelle et al., Physics of Plasmas 20, 062904 (2013)
- T. Esirkepov, Computer Physics Communications, 135(2), 144 (2001)

