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Course overview

● 3 lectures: Monday, Tuesday, Thursday

● Topics:

- [1] The Particle-In-Cell (PIC) method as a tool to study laser-
plasma interaction in LPAs;

- [2] Limits/challenges of conventional PIC codes; 

- [3] Tools to speed-up the modeling of LPAs (Lorentz-boosted
frame, quasi-static approximation, Fourier-mode decomposition,
ponderomotive guiding center description, etc.);
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Overview of lecture 1

● Basic physics of laser-plasma accelerators (LPAs);

● The Vlasov-Maxwell (V-M) equations system;

● The PIC approach to solve V-M equations system:

– Numerical particles;

– The PIC loop;

– Force interpolation and current deposition;

– Pushing “numerical” particles;

– Solving Maxwell's equations on a grid;
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LPA as compact accelerators

Plasma wavelength:
λ

p
~ n

0
-1/2≈ 10-100 μm,

for n
0
≈1019-1017cm-3

▲ = ponderomotive force:

F
p
 ~ -grad[I

laser
]

→ F
p
 displaces electrons 

(but not the ions) creating 
charge separation from which 

EM fields arise 

Plasma density
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sv
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px
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w
0
 ~
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p  

electron plasma
waves (v

phase
~ v

laser
)

Longitudinal, k
p
(z-ct)

T0 ~ λ
p
 /c 

Longitudinal wake

Accel.
Decel.

vlaser~ c

Short and intense laser propagating in a plasma:
- short → T

0 
=L

0
/c ~ λ

p
/c (tens of fs) 

- intense → a
0
=eA

0
/mc2 ~ 1 (λ

0
=0.8 um, I

0
>1018 W/cm2)
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wakefield, E
z

laser

comoving coordinate, ζ

plasma  waves

E
z
~mcω

p
/e~100 [V/m] x (n

0
[cm-3])1/2

e.g., n
0
~1017 cm-3, a

0
~ 1 → E

z
~30 GV/m,

~ 102-103 larger than conventional 
RF accelerators 

LPAs produce 1-100 GV/m accelerating
gradients + confining forces
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Electron bunches to be accelerated in an LPA
can be obtained from background plasma 

6

Electron 
bunch to be 
accelerated

→ external injection (bunch from a conventional accelerator)

→ trapping of background plasma electrons

Requires:
- short (~ fs) bunch generation
- precise bunch-laser synchronization 

* self-injection (requires high-intensity, high 
plasma density) → limited control

* controlled injection → use laser(s) and/or 
tailored plasma to manipulate the plasma wave 
properties and capture background electrons 

 - laser-triggered injection (e.g., colliding pulse)
 - ionization-induced injection
 - density gradient injection 

Bunch

laser
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Longitudinal direction
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Limits to energy gain in a (single stage) LPA

wakefield, E
z

laser

comoving coordinate, ζ

v
bunch

v
wave

laser

e-bunch

wakefield 

● laser diffraction (~ Rayleigh range) 
                 →  mitigated by guiding: 

                           plasma channel and/or
                           self-focusing/self-guiding 

● beam-wave dephasing: 
        β

bunch
 ≈ 1, β

wave
 ≈ 1 - λ

0
2/(2λ

p
2) 

            → slippage L
d
 ≈ (λ

p
/4)/ (β

bunch
 - β

wave
) ~ n

0
-3/2

 → mitigated by longitudinal density tailoring

● laser energy depletion → energy loss into 
plasma wave excitation, L

pd
~n

0
-3/2 

(L
pd

 ≈ 1 cm for n
0
=1018 cm-3)  

Z
rayleigh

=
πw

0
2/λ

0

plasma waves

→  Energy gain  ~ n
0

-1
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Schematic of a “typical” LPA experiment +
modeling needs

Laser pulse [“known”] 

Plasma target (gas-jet, gas cell,
capillary, etc..):

- Gas dynamics (gas target 
formation; ~ms scalr)

- Plasma formation (discharge, 
MHD; 1 ns - 100 ns scale)

- Laser-plasma interaction
(laser evolution in the plasma, wake
formation and evolution, [self-]injection,
bunch dynamics; ~fs → ~ps scale)

Diagnostics:
- laser (e.g., laser
mode, spectrum,
etc.)  
- bunch (charge,
spectrum,
divergence, etc.)
- radiation (betatron,
etc.)

Bunch transport 
(transport optics,
etc.)
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Laser pulse [“known”] 

Plasma target (gas-jet, gas cell,
capillary, etc..):

- Gas dynamics (gas target 
formation; ~ms scalr)

- Plasma formation (discharge, 
MHD; 1 ns - 100 ns scale)

- Laser-plasma interaction
(laser evolution in the plasma, wake
formation and evolution, [self-]injection,
bunch dynamics; ~fs → ~ps scale)

Diagnostics:
- laser (e.g., laser
mode, spectrum,
etc.)  
- bunch (charge,
spectrum,
divergence, etc.)
- radiation (betatron,
etc.)

Bunch transport 
(transport optics,
etc.)← Computationally

expensive part! 
9

Schematic of a “typical” LPA experiment +
modeling needs



  

Laser-plasma interaction physics in LPAs
described via Maxwell-Vlasov equations

● Statistical* description for the plasma in the 6D (r,p) phase-space 
→ phase-space distribution function f

s
(r,p,t)drdp = # particles (s=electron, ion)

located between r and r+dr with a momentum between p and p+dp at time t

● Evolution of the distribution → Vlasov equation (collisionless plasma)

● Evolution of the fields E(r, t), B(r, t) → Maxwell equations

● Coupling between Vlasov ↔ Maxwell

 

Laser + Wakefield
dynamics

Plasma 
dynamics

n(r,t)=∫f
s
(r,p,t)d3p
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Numerical solution of M-V equations requires using 
grids (spatial, phase-space) to represent physical quantities

L
z 

L
x

L
y

*OSIRIS simulation

Δz

● E.g., 3D grid for density

Δx
Δy

Grid points: 
N

x
≈L

x
/Δx

N
y
≈L

y
/Δy

N
z
≈L

z
/Δz

→ N
3D

=N
x
*N

y
*N

z 11



Use of a moving computational box greatly reduces
memory requirements for LPA simulations

← plasma (~mm to ~m scale) → 

Fixed grid

0 10 21 N

Moving grid (window)

Grid is shifted to follow the laser

0 M

M << N

← 10's-100's um →

wakefield, E
z

laser

Simulation box (moving window)

v
window 

≈ c
vlaser≈ c

vbunch≈ c
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Numerical solution of the Maxwell-Vlasov
equations: direct solution

● Direct numerical solution of MV equations is unfeasible

E(r), B(r), J(r), ... → discretized on a 3D spatial grid

f
s
(r, p, t) → discretized on a 6D = 3D (space) x 3D (momentum) phase-space grid

Ex: Plasma: n
0
 ~ 1018 cm-3→ λ

p
 ~ 30 um

Laser: λ
0
 ~ 1 um, L

0
 ~ 10 um, w

0
 ~ 30 um

3D spatial grid:
L

x
 ~ L

y
 ~ L

z
 ~ 100 um [a few plasma lengths] 

Δx~Δy~λ
p
/60 [transverse]

Δz~λ
0
/30 [longitudinal]

N
x
~N

y
~200 ,  N

z
~3000

3D momentum grid:
L

px
 ~ L

py
 ~ 10 mc [transverse]

L
pz

 ~ 2000 mc  [longitudinal] 

Δpx~Δpy~Δpz~mc/10 [transverse]
N

px
~N

py
~100 ,  N

pz
~20000

N
3D

=N
x
*N

y
*N

z
~1.2x108 points

N
6D

=N
3D

*N
px

*N
py

*N
pz

~ 2x1016 points

→ Representing 1 double precision quantity 
(f

s
) on a grid with N

6D
 points requires >200

PBytes of memory  ==> UNFEASIBLE!!!
13



  

Numerical solution of the Maxwell-Vlasov
equations: particle method (PIC)/1

● Vlasov equation solved using a particle method (+ 3D spatial grid for the fields)

f
s
(r,p,t) = (1/N

s
)∑

k 
g[r-r

k
(t)]δ[p-p

k
(t)]

g → “compact support” function ∫g(r)dr=1
δ → Dirac function
N

s
 → # “numerical” particles

r
k
(t), p

k
(t) → phase-space orbit of the k-th 

“numerical” particle (Vlasov characteristic)

r

p p

Sampling with
“numerical” particles

f
s
(r,p,t)

r

r
k
(t), p

k
(t)

Particle “shape”
(finite spatial extent)
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Numerical solution of the Maxwell-Vlasov
equations: particle method (PIC)/2

f
s
(r,p,t) = (1/N

s
)∑

k 
g[r-r

k
(t)]δ[p-p

k
(t)]

dr
k
/dt=v

k
=p

k
/mγ

k
 

dp
k
/dt= q

s
[E

k
+(v

k
/c)B

k
]

where  E
k
 = ∫E(r)g(r-r

k
)dr, 

            B
k
 = ∫B(r)g(r-r

k
)dr

● Equation for the characteristics of the Vlasov equation

● Expressing the current density using numerical particles 

J=∑
s
(q

s
/N

s
)∑

k=0, Ns 
v

k
g[r-r

k
(t)]

==> evolution of f
s
 described via the motion of a “swarm” of numerical particles
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Numerical solution of the Maxwell-Vlasov
equations: particle method (PIC)/3

Spatial extension = Δx 

Spatial extension = 2Δx 

Spatial extension = 3Δx 

● Example of particle shapes: g(r)=g
x
(x)g

y
(y)g

z
(z)

x/Δx

Numerical particles on the spatial grid
(“clouds” of charge)

g
0
(x)

g
1
(x)

g
2
(x)

Δx

Δ
y g(x,y)=g

1
(x)g

1
(y)

→ describes interaction particles ↔ grid
→ finite spatial extension (to limit number of calculations)
→ type of shape controls noise in simulation (higher order reduces noise)  
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Memory requirements for the solution of Maxwell-
Vlasov equations using the PIC technique

Plasma: n
0
 ~ 1018 cm-3→ λ

p
 ~ 30 um

Laser: λ
0
 ~ 1 um, L

0
 ~ 10 um, w

0
 ~ 30 um

3D spatial grid:
L

x
 ~ L

y
 ~ L

z
 ~ 100 um [a few plasma lengths] 

Δx~Δy~λ
p
/60 [transverse]

Δz~λ
0
/30 [longitudinal]

N
x
~N

y
~200 ,  N

z
~3000

Particles:
N

ppc
=1-100 

N
3D

=N
x
*N

y
*N

z
~1.2x108 points

Grid → (9 fields) x (8 bytes) x N
3D

 ~ 7 GBytes

Particles → (6 coordinates) x (8 bytes) x N
tot 

~ (5-500) GBytes

N
tot

=N
3D

*N
ppc

~108-1010 particles

Memory requirements OK!!!

Edison @ NERSC (105 CPUs) = 360 TBytes, 2.6 Pflops/s 17



Resolution in momentum space depends on
number of “numerical” particles per cell

x

p

x

p

many PPC few PPC

Δ
x

Δ
x

???structures
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The PIC loop: self-consistent solution of
Maxwell-Vlasov equations

Load initial EM 
fields on the grid

Load initial
particle distribution

Force interpolation
(E, B)

i,j
    F

k

Push particle

Current deposition
(r

k
,p

k
)    J

i,j

Evolve E, B (solution of 
Maxwell's equations) 

Initial
condition → 

Δt
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Load initial EM 
fields on the grid

Load initial
particle distribution

Push particleEvolve E, B (solution of 
Maxwell's equations) 

Δt

Initial
condition → 

The PIC loop: self-consistent solution of
Maxwell-Vlasov equations

20

Force interpolation
(E, B)

i,j
    F

k

Current deposition
(r

k
,p

k
)    J

i,j



Force interpolation: grid → particle [1D]  

x

E(x)E(x)

E
i+1

E
i

E
i-1

x
i-1

x
i

x
i+1

x
i
=x

min
+Δ

x
i

i=0,1,.., N
x
-1

Δ
x
=(x

max
-x

min
)/(N

x
-1)

q
k

             1/Δ
x
 |x|<Δ

x
/2

g
0
(x)=

             0      |x|>Δ
x
/2

Δ
x

η=(q
k
-x

i
)/Δ

x

1-η η

<E>(x=q
k
) = (1-η)E

i
 + ηE

i+1

 

if q
k
=x

i
 → <E>=E

i
 
 

if q
k
=x

i+1/2
→ <E>=(E

i
 +E

i+1
)/2

 

if q
k
=x

i+1
 → <E>=E

i+1
 
 

 i i+1 i-1 
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Load initial EM 
fields on the grid

Load initial
particle distribution

Push particleEvolve E, B (solution of 
Maxwell's equations) 

Initial
condition → 

Δt

The PIC loop: self-consistent solution of
Maxwell-Vlasov equations
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Force interpolation
(E, B)

i,j
    F

k

Current deposition
(r

k
,p

k
)    J

i,j



Current deposition: particle → grid [1D]

xx
i-1

x
i

x
i+1

q
k

             1/Δx |x|<Δ
x
/2

g
0
(x)=

             0      |x|>Δ
x
/2

Δ
x

η=(q
k
-x

i
)/Δ

x

1-η η

J
i
   += (1-η)*(q

s
u

k
/mγ

k
)*(1/Δ

x
)*(1/N

s
)

J
i+1

 += η*(q
s
u

k
/mγ

k
)*(1/Δ

x
)*(1/N

s
)

 i i+1 i-1 

x
i
=x

min
+Δ

x
i

i=0,1,.., N
x
-1

Δ
x
=(x

max
-x

min
)/(N

x
-1)

==> Charge distributed between the grid points 
i and i+1

N.B. Using the same scheme to perform force interpolation and current
deposition gives no self-force on the particle.    23



Load initial EM 
fields on the grid

Load initial
particle distribution

Push particleEvolve E, B (solution of 
Maxwell's equations) 

Initial
condition → 

Δt

The PIC loop: self-consistent solution of
Maxwell-Vlasov equations
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Force interpolation
(E, B)

i,j
    F

k

Current deposition
(r

k
,p

k
)    J

i,j



Major criteria to chose algorithms in a PIC code

Integration of Maxwell's equations and particle's equations of motion requires
solving PDEs and ODEs → discretized numerical solution  

Properties of numerical schemes:

● Convergence → the numerical solution goes to the analytical one if Δ
x
, Δ

y
,

Δ
z
and Δ

t
 go to zero.

● Accuracy → scaling of the truncation error with Δ
x
, Δ

y
, Δ

z
and Δ

t
.

 
● Stability → if total errors (truncation + round-off) grows in time then the scheme

is unstable.

● Efficiency → computational cost of the algorithm.

● Dissipation → dissipation of some physical quantity due to truncation error.

● Conservation → deviation of the conservation law caused by the truncation
error.
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Discretization of (spatial and temporal) derivatives

x

f(x)

(i-1)∆x i∆x (i+1)∆x

x → space or time variable
∆x → discretization step
f(x) → some function of x

f
if

i-1

f
i+1

Derivatives of f(x) [using Taylor's 
expansion]:

● df/dx|
i
=(f

i+1
-f

i
)/∆x + O(∆x)

● df/dx|
i
=(f

i
-f

i-1
)/∆x + O(∆x)

● df/dx|
i
=(f

i+1
-f

i-1
)/(2∆x) + O(∆x2)

● df/dx|
i+1/2

=(f
i+1

-f
i
)/∆x + O(∆x2)

● df/dx|
i-1/2

=(f
i
-f

i-1
)/∆x + O(∆x2)

(i+1/2)∆x

1st  
order

2nd   
order

(i-1/2)∆x

→ centering easy way to construct 2nd 
order scheme

→ time integration of an ODE requires 
at least a 2nd order scheme in order 
to provide meaningful results
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Load initial EM 
fields on the grid

Load initial
particle distribution

Push particleEvolve E, B (solution of 
Maxwell's equations) 

Initial
condition → 

Δt

The PIC loop: self-consistent solution of
Maxwell-Vlasov equations
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Force interpolation
(E, B)

i,j
    F

k

Current deposition
(r

k
,p

k
)    J

i,j



Particle pusher (2nd order “leapfrog” scheme)

time

(n-1)Δt nΔt (n+1)Δt
pn-1/2

Position and momentum are staggered 
in time → 2nd order accurate scheme!

rn, [En, Bn]

pn+1/2

(dp/dt)n → (pn+1/2  - pn-1/2)/Δt

 vn/c → (pn+1/2  + pn-1/2)/(2mcγn)

Implicit equation!

pn+1/2  - pn-1/2

            
Δt = q  En +

pn+1/2 + pn-1/2

         
2mc γn x Bn

rn+1  - rn

         
Δt = vn+1/2 =pn+1/2/(m γn+1/2)

rn+1

(dr/dt)n+1/2 →
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Solution of momentum equation with Boris scheme
(explicit)

Boris scheme (2nd order, time reversible) separates the contributions of electric 
and magnetic fields in the motion of the particle 

→ (1) momentum change due to E  (1/2 kick)

→ (2) rotation of p- due to B (particle energy does not change)

→ (3) momentum change due to E (1/2 kick)

pn-1/2 → p- = pn-1/2 + q En (∆t/2)

p+ → pn+1/2 = p+ + q En (∆t/2)

γn = [1+(p-/mc)2 ]1/2 t = q∆tBn/2mcγn γn = [1+(p-/mc)2 ]1/2 s = 2t/(1+|t|2)

p' = p- + p- x t 

p+ = p- + p' x s 

p- →  p+: rotation around Bn by
an angle arctan[q∆tBn/2mcγn]

(1) (3)
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Load initial EM 
fields on the grid

Load initial
particle distribution

Push particleEvolve E, B (solution of 
Maxwell's equations) 

Initial
condition → 

Δt

The PIC loop: self-consistent solution of
Maxwell-Vlasov equations
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Force interpolation
(E, B)

i,j
    F

k

Current deposition
(r

k
,p

k
)    J

i,j



Field solver (2nd order finite-difference time-domain
“Yee” scheme): time discretization

time

(n-1)Δt nΔt (n+1)Δt
Bn-1/2

En

Bn+1/2

En+1

(∂E/∂t)n+1/2→ (En+1  - En)/Δt

(∂B/∂t)n→ (Bn+1/2  - Bn-1/2)/Δt

Bn+1/2 = Bn-1/2  - c Δt ∆xEn

En+1

 
= En

 
+ Δt [c∆xBn+1/2 -4πJn+1/2]

E & B are staggered in time 
→ 2nd order accurate scheme!

curl Bn+1/2, curl En

→ computed
numerically on 
the grid

To push particle we need: 
Bn=(Bn-1/2  + Bn+1/2)/2        ← 
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Field solver (2nd order finite-difference time-domain
“Yee” scheme): space discretization

(En+1

k
  - En

k
)/Δτ =-(Bn+1/2

k+1/2
  - Bn+1/2

k-1/2
)/Δz

Rewriting Maxwell's equation in 1D (E=E
x
, B=B

y
) and in vacuum (J=0) [cΔt=Δτ]

(En+1  - En)/Δτ =-∂B/∂z|n+1/2 

Time discretization (2nd order)

Space discretization (2nd order)

(Bn+1/2  - Bn-1/2)/Δτ =-∂E/∂z|n 

(Bn+1/2

k+1/2
  - Bn-1/2

k+1/2
)/Δτ =-(En

k+1
  - En

k
)/ΔzE & B are staggered in space 

→ 2nd order accurate scheme!   
32



Field solver (Yee) in 3D: exploits spatial and temporal
staggering of fields to obtain 2nd order accurate scheme/1

=> Different components 
of the different fields are
staggered, so that all
derivatives in the Maxwell
equations are centered

33



Field solver (Yee) in 3D: exploits spatial and temporal
staggering of fields to obtain 2nd order accurate scheme/2
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What happens to div B = 0 and div E=4πρ 
equations?

● The (discretized) div B = 0 and div E=4πρ equations must be satisfied for t=0 
(consistent initial condition)

● If div B = 0 is satisfied for t=0, then it remains satisfied at all times as long as
 B is evolved with the Faraday equation. This remains true when equations 
are discretized in space and time (provided that div curl = 0)

● If div E=4πρ is satisfied for t=0 then it remains satisfied at all times if continuity
 equation (div J + ∂ρ/∂t=0) holds

● Unfortunately, using direct charge and current deposition (i.e., J and ρ from 
numerical particles via shape-functions), the discretized version  of the 
continuity equation is not satisfied (div E≠4πρ):

At each step correct E, namely E'=E-grad[δϕ], so that  div E'=4πρ 
→ ∆(δϕ) = div E - 4πρ [Boris correction];

Construct J in such a way cont. equation is automatically 
satisfied [Esirkepov, 2001];
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