Advanced modeling tools for laserplasma accelerators (LPAs) 1/3

Carlo Benedetti LBNL, Berkeley, CA, USA (with contributions from R. Lehe, J.-L. Vay, T. Mehrling)

Advanced Summer School on

"Laser-Driven Sources of High Energy Particles and Radiation"

9-16 July 2017, CNR Conference Centre, Anacapri, Capri, Italy

Work supported by Office of Science, Office of HEP, US DOE Contract DE-AC02-05CH11231

Course overview

- 3 lectures: Monday, Tuesday, Thursday
- Topics:

- [1] The Particle-In-Cell (PIC) method as a tool to study laserplasma interaction in LPAs;

- [2] Limits/challenges of conventional PIC codes;

- [3] Tools to speed-up the modeling of LPAs (Lorentz-boosted frame, quasi-static approximation, Fourier-mode decomposition, ponderomotive guiding center description, etc.);

Overview of lecture 1

- Basic physics of laser-plasma accelerators (LPAs);
- The Vlasov-Maxwell (V-M) equations system;
- The PIC approach to solve V-M equations system:
 - Numerical particles;
 - The PIC loop;
 - Force interpolation and current deposition;
 - Pushing "numerical" particles;
 - Solving Maxwell's equations on a grid;

LPA as compact accelerators

Short and intense laser propagating in a plasma: - short $\rightarrow T_0 = L_0/c \sim \lambda_0/c$ (tens of fs)

- intense $\rightarrow a_0 = eA_0/mc^2 \sim 1 (\lambda_0 = 0.8 \text{ um}, I_0 > 10^{18} \text{ W/cm}^2)$

Plasma wavelength:
$$\begin{split} \lambda_{p} &\sim n_{0}^{-1/2} \approx 10\text{-}100 \ \mu\text{m}, \\ \text{for } n_{0} \approx 10^{19}\text{-}10^{17}\text{cm}^{-3} \end{split}$$

LPAs produce 1-100 GV/m accelerating gradients + confining forces

Electron bunches to be accelerated in an LPA can be obtained from background plasma

 \rightarrow external injection (bunch from a conventional accelerator)

Requires:

- short (~ fs) bunch generation
- precise bunch-laser synchronization

Electron bunch to be accelerated

\rightarrow trapping of background plasma electrons

* self-injection (requires high-intensity, high plasma density) \rightarrow limited control

* controlled injection \rightarrow use laser(s) and/or tailored plasma to manipulate the plasma wave properties and capture background electrons

- laser-triggered injection (e.g., colfiding pulse)
- ionization-induced injection
- density gradient injection

Limits to energy gain in a (single stage) LPA

 \rightarrow Energy gain ~ n₀⁻¹

Acc. gradient ~ $n_0^{1/2}$

comoving coordinate, ζ

Schematic of a "typical" LPA experiment + modeling needs

Laser pulse ["known"]

Dipole magnet

Lanex

OAP

Gas dynamics (gas target formation; ~ms scalr)

- Plasma formation (discharge, MHD; 1 ns - 100 ns scale)

Laser-plasma interaction
 (laser evolution in the plasma, wake
 formation and evolution, [self-]injection,
 bunch dynamics; ~fs → ~ps scale)

Diagnostics: - laser (e.g., laser mode, spectrum, etc.) - bunch (charge, spectrum, divergence, etc.) - radiation (betatron, etc.)

Bunch transport (transport optics, etc.)

Schematic of a "typical" LPA experiment + modeling needs

Laser pulse ["known"]

Dipole magnet

OAP

Gas dynamics (gas target formation; ~ms scalr)

- Plasma formation (discharge, MHD; 1 ns - 100 ns scale)

- Laser-plasma interaction (laser evolution in the plasma, wake formation and evolution, [self-]injection, bunch dynamics; \sim fs $\rightarrow \sim$ ps scale)

← Computationally expensive part!

'anax

Diagnostics: - laser (e.g., laser mode, spectrum, etc.) - bunch (charge, spectrum, divergence, etc.) - radiation (betatron, etc.)

Bunch transport (transport optics, etc.)

Laser-plasma interaction physics in LPAs described via Maxwell-Vlasov equations

- Statistical* description for the plasma in the 6D (r,p) phase-space
 → phase-space distribution function f_s(r,p,t)drdp = # particles (s=electron, ion)
 located between r and r+dr with a momentum between p and p+dp at time t
- Evolution of the distribution \rightarrow **Vlasov** equation (collisionless plasma)

$$\frac{\partial f_s}{\partial t} + \mathbf{v} \cdot \frac{\partial f_s}{\partial \mathbf{r}} + q_s \left(\mathbf{E} + \frac{v}{c} \times \mathbf{B} \right) \cdot \frac{\partial f_s}{\partial \mathbf{p}} = 0 \qquad \begin{cases} \text{Plasma} \\ \text{dynamics} \end{cases}$$

• Evolution of the fields E(r, t), $B(r, t) \rightarrow Maxwell$ equations

$$\frac{\partial \mathbf{B}}{\partial t} = -c\nabla \times \mathbf{E} \quad \frac{\partial \mathbf{E}}{\partial t} = c\nabla \times \mathbf{B} - 4\pi \mathbf{J}$$
 Laser + Wakefield dynamics

Coupling between Vlasov ↔ Maxwell

$$\mathbf{J} = \sum_{s} q_{s} \int \mathbf{v} f_{s}(\mathbf{p}, \mathbf{r}, t) d\mathbf{p} \qquad \mathsf{n}(\mathbf{r}, t) = \iint_{s} (\mathbf{r}, \mathbf{p}, t) d^{3}\mathbf{p}$$

Numerical solution of M-V equations requires using grids (spatial, phase-space) to represent physical quantities

• E.g., 3D grid for density

Use of a moving computational box greatly reduces memory requirements for LPA simulations

Numerical solution of the Maxwell-Vlasov equations: direct solution

• Direct numerical solution of MV equations is **unfeasible**

E(**r**), B(**r**), J(**r**), ... \rightarrow discretized on a 3D spatial grid

 $f_{r}(\mathbf{r}, \mathbf{p}, t) \rightarrow \text{discretized on a 6D} = 3D \text{ (space) x 3D (momentum) phase-space grid}$

Ex: Plasma: $n_0 \sim 10^{18} \text{ cm}^{-3} \rightarrow \lambda_p \sim 30 \text{ um}$ Laser: $\lambda_0 \sim 1 \text{ um}$, $L_0 \sim 10 \text{ um}$, $w_0 \sim 30 \text{ um}$

3D spatial grid: $L_x \sim L_y \sim L_z \sim 100 \text{ um} \text{ [a few plasma lengths]}$ $\Delta x \sim \Delta y \sim \lambda_p/60 \text{ [transverse]}$ $\Delta z \sim \lambda_0/30 \text{ [longitudinal]}$ $N_x \sim N_y \sim 200 \text{ , } N_z \sim 3000$

 $N_{3D} = N_x N_y N_z \sim 1.2 \times 10^8$ points $N_{6D} = N_{3D} N_{px} N_{py} N_{pz} \sim 2 \times 10^{16}$ points 3D momentum grid: $L_{px} \sim L_{py} \sim 10 \text{ mc [transverse]}$ $L_{pz} \sim 2000 \text{ mc [longitudinal]}$ $\Delta px \sim \Delta py \sim \Delta pz \sim mc/10 [transverse]$ $N_{px} \sim N_{py} \sim 100$, $N_{pz} \sim 20000$

→ Representing 1 double precision quantity (f_s) on a grid with N_{6D} points requires >200 <u>PBytes</u> of memory ==> UNFEASIBLE!!!

Numerical solution of the Maxwell-Vlasov equations: particle method (PIC)/1

• Vlasov equation solved using a particle method (+ 3D spatial grid for the fields)

Numerical solution of the Maxwell-Vlasov equations: particle method (PIC)/2

Equation for the characteristics of the Vlasov equation

==> evolution of f_{g} described via the motion of a "swarm" of numerical particles

• Expressing the current density using numerical particles

$$\mathbf{J} = \sum_{s} q_{s} \int \mathbf{v} f_{s}(\mathbf{p}, \mathbf{r}, t) d\mathbf{p} \quad \longrightarrow \quad \mathbf{J} = \sum_{s} (\mathbf{q}_{s} / \mathbf{N}_{s}) \sum_{k=0, Ns} \mathbf{v}_{k} g[\mathbf{r} - \mathbf{r}_{k}(t)]$$

Numerical solution of the Maxwell-Vlasov equations: particle method (PIC)/3

• Example of particle shapes: $g(\mathbf{r})=g_x(x)g_y(y)g_z(z)$

 \rightarrow describes interaction particles \leftrightarrow grid

- \rightarrow finite spatial extension (to limit number of calculations)
- \rightarrow type of shape controls noise in simulation (higher order reduces noise)

Memory requirements for the solution of Maxwell-Vlasov equations using the PIC technique

Plasma: $n_0 \sim 10^{18} \text{ cm}^{-3} \rightarrow \lambda_p \sim 30 \text{ um}$ Laser: $\lambda_0 \sim 1 \text{ um}$, $L_0 \sim 10 \text{ um}$, $w_0 \sim 30 \text{ um}$

3D spatial grid: $L_x \sim L_y \sim L_z \sim 100 \text{ um [a few plasma lengths]}$ $\Delta x \sim \Delta y \sim \lambda_p/60 \text{ [transverse]}$ $\Delta z \sim \lambda_0/30 \text{ [longitudinal]}$ $N_x \sim N_y \sim 200$, $N_z \sim 3000$ $N_{ab} = N_x * N_y * N_z \sim 1.2 \times 10^8 \text{ points}$

Particles: N_{ppc} =1-100

$$N_{tot} = N_{3D} N_{ppc} \sim 10^8 - 10^{10}$$
 particles

Grid \rightarrow (9 fields) x (8 bytes) x N_{3D} ~ 7 GBytes Particles \rightarrow (6 coordinates) x (8 bytes) x N_{tot} ~ (5-500) GBytes

Memory requirements OK!!!

Edison @ NERSC (10⁵ CPUs) = 360 TBytes, 2.6 Pflops/s

Resolution in momentum space depends on number of "numerical" particles per cell

The PIC loop: self-consistent solution of Maxwell-Vlasov equations

The PIC loop: self-consistent solution of Maxwell-Vlasov equations

Force interpolation: grid \rightarrow particle [1D]

The PIC loop: self-consistent solution of Maxwell-Vlasov equations

Current deposition: particle \rightarrow grid [1D]

N.B. Using the same scheme to perform force interpolation and current deposition gives no self-force on the particle.

The PIC loop: self-consistent solution of Maxwell-Vlasov equations

Major criteria to chose algorithms in a PIC code

Integration of Maxwell's equations and particle's equations of motion requires solving PDEs and ODEs \rightarrow discretized numerical solution

Properties of numerical schemes:

- **Convergence** \rightarrow the numerical solution goes to the analytical one if $\Delta_x, \Delta_y, \Delta_y$, Δ_z and Δ_t go to zero.
- Accuracy \rightarrow scaling of the truncation error with $\Delta_x, \Delta_y, \Delta_z$ and Δ_t .
- **Stability** → if total errors (truncation + round-off) grows in time then the scheme is unstable.
- **Efficiency** \rightarrow computational cost of the algorithm.
- **Dissipation** \rightarrow dissipation of some physical quantity due to truncation error.
- Conservation \rightarrow deviation of the conservation law caused by the truncation error.

Discretization of (spatial and temporal) derivatives

 $x \rightarrow$ space or time variable $\Delta x \rightarrow$ discretization step $f(x) \rightarrow$ some function of x

Derivatives of f(x) [using Taylor's expansion]:

 $\left. \begin{array}{c} df/dx \Big|_{i} = (f_{i+1} - f_{i})/\Delta x + O(\Delta x) \\ 0 df/dx \Big|_{i} = (f_{i} - f_{i-1})/\Delta x + O(\Delta x) \end{array} \right\} \begin{array}{c} 1^{st} \\ order \\ 0 df/dx \Big|_{i} = (f_{i+1} - f_{i-1})/(2\Delta x) + O(\Delta x^{2}) \\ 0 df/dx \Big|_{i+1/2} = (f_{i+1} - f_{i})/\Delta x + O(\Delta x^{2}) \\ 0 df/dx \Big|_{i+1/2} = (f_{i+1} - f_{i})/\Delta x + O(\Delta x^{2}) \end{array} \right\} \begin{array}{c} 2^{nd} \\ order \\ 0 df/dx \Big|_{i+1/2} = (f_{i} - f_{i-1})/\Delta x + O(\Delta x^{2}) \end{array}$

 \rightarrow centering easy way to construct 2nd order scheme

 \rightarrow time integration of an ODE requires at least a 2nd order scheme in order to provide meaningful results

The PIC loop: self-consistent solution of Maxwell-Vlasov equations

Particle pusher (2nd order "leapfrog" scheme)

Solution of momentum equation with Boris scheme (explicit)

Boris scheme (2nd order, time reversible) separates the contributions of electric and magnetic fields in the motion of the particle

 \rightarrow (1) momentum change due to E (1/2 kick)

$$\mathbf{p}^{n-1/2} \rightarrow \mathbf{p}^{-} = \mathbf{p}^{n-1/2} + \mathbf{q} \mathbf{E}^{n} (\Delta t/2)$$

 \rightarrow (2) rotation of **p**⁻ due to **B** (particle energy does not change)

 $\gamma^{n} = [1 + (\mathbf{p}^{-}/mc)^{2}]^{1/2}$ $\mathbf{t} = q \Delta t \mathbf{B}^{n}/2mc\gamma^{n}$ $\mathbf{s} = 2t/(1 + |\mathbf{t}|^{2})$

 $p' = p^{-} + p^{-} \times t$ $p^{+} = p^{-} + p' \times s$ $\mathbf{p}^{-} \rightarrow \mathbf{p}^{+}$: rotation around \mathbf{B}^{n} by

an angle $\arctan[q\Delta t\mathbf{B}^n/2mc\gamma^n]$

 \rightarrow (3) momentum change due to **E** (1/2 kick)

$$\mathbf{p}^{+} \rightarrow \mathbf{p}^{n+1/2} = \mathbf{p}^{+} + \mathbf{q} \mathbf{E}^{n} (\Delta t/2)$$

The PIC loop: self-consistent solution of Maxwell-Vlasov equations

Field solver (2nd order finite-difference time-domain "Yee" scheme): time discretization

Field solver (2nd order finite-difference time-domain "Yee" scheme): space discretization

Rewriting Maxwell's equation in 1D ($E=E_x$, $B=B_y$) and in vacuum (J=0) [$c\Delta t=\Delta T$]

Field solver (Yee) in 3D: exploits spatial and temporal staggering of fields to obtain 2nd order accurate scheme/1

=> Different components of the different fields are **staggered**, so that all derivatives in the Maxwell equations are centered

Field	Position in space and time				Notation
	х	У	\mathbf{Z}	t	
E_x	$(i+\frac{1}{2})\Delta x$	$j\Delta y$	$k\Delta z$	$n\Delta t$	$E_{x_{i+\frac{1}{2},j,k}}^n$
E_y	$i\Delta x$	$(j+\frac{1}{2})\Delta y$	$k\Delta z$	$n\Delta t$	$E_{y_{i,j+\frac{1}{2},k}}$
E_z	$i\Delta x$	$j\Delta y$	$(k+\frac{1}{2})\Delta z$	$n\Delta t$	$E_{z_{i,j,k+\frac{1}{2}}}$
B_x	$i\Delta x$	$(j+\frac{1}{2})\Delta y$	$(k+\frac{1}{2})\Delta z$	$(n+\frac{1}{2})\Delta t$	${B_x}_{i,j+\frac{1}{2},k+\frac{1}{2}}^{n+\frac{1}{2}}$
B_y	$(i+\frac{1}{2})\Delta x$	$j\Delta y$	$(k+\frac{1}{2})\Delta z$	$(n+\frac{1}{2})\Delta t$	${B_y}_{i+\frac{1}{2},j,k+\frac{1}{2}}^{n+\frac{1}{2}}$
B_z	$(i+\frac{1}{2})\Delta x$	$(j+\frac{1}{2})\Delta y$	$k\Delta z$	$(n+\frac{1}{2})\Delta t$	$B_{z_{i+\frac{1}{2},j+\frac{1}{2},k}^{n+\frac{1}{2}}}$

Field solver (Yee) in 3D: exploits spatial and temporal staggering of fields to obtain 2nd order accurate scheme/2

Maxwell-Ampère

$$\begin{aligned} \partial_t E_x \Big|_{i+\frac{1}{2},j,k}^{n+\frac{1}{2}} &= c^2 \partial_y B_z \Big|_{i+\frac{1}{2},j,k}^{n+\frac{1}{2}} - c^2 \partial_z B_y \Big|_{i+\frac{1}{2},j,k}^{n+\frac{1}{2}} - \mu_0 c^2 j_x {n+\frac{1}{2},j,k}^{n+\frac{1}{2}} \\ \partial_t E_y \Big|_{i,j+\frac{1}{2},k}^{n+\frac{1}{2}} &= c^2 \partial_z B_x \Big|_{i,j+\frac{1}{2},k}^{n+\frac{1}{2}} - c^2 \partial_x B_z \Big|_{i,j+\frac{1}{2},k}^{n+\frac{1}{2}} - \mu_0 c^2 j_y {n+\frac{1}{2},k}^{n+\frac{1}{2}} \\ \partial_t E_z \Big|_{i,j,k+\frac{1}{2}}^{n+\frac{1}{2}} &= c^2 \partial_x B_y \Big|_{i,j,k+\frac{1}{2}}^{n+\frac{1}{2}} - c^2 \partial_y B_x \Big|_{i,j,k+\frac{1}{2}}^{n+\frac{1}{2}} - \mu_0 c^2 j_z {n+\frac{1}{2},k}^{n+\frac{1}{2}} \end{aligned}$$

Maxwell-Faraday

$$\partial_{t}B_{x}|_{i,j+\frac{1}{2},k+\frac{1}{2}}^{n} = -\partial_{y}E_{z}|_{i,j+\frac{1}{2},k+\frac{1}{2}}^{n} + \partial_{z}E_{y}|_{i,j+\frac{1}{2},k+\frac{1}{2}}^{n}$$

$$\partial_{t}B_{y}|_{i+\frac{1}{2},j,k+\frac{1}{2}}^{n} = -\partial_{z}E_{x}|_{i+\frac{1}{2},j,k+\frac{1}{2}}^{n} + \partial_{x}E_{z}|_{i+\frac{1}{2},j,k+\frac{1}{2}}^{n}$$

$$\partial_{t}B_{z}|_{i+\frac{1}{2},j+\frac{1}{2},k}^{n} = -\partial_{x}E_{y}|_{i+\frac{1}{2},j+\frac{1}{2},k}^{n} + \partial_{y}E_{x}|_{i+\frac{1}{2},j+\frac{1}{2},k}^{n}$$

$$\partial_{t}F|_{i',j',k'}^{n'} \equiv \frac{F_{i',j',k'}^{n'+\frac{1}{2}} - F_{i',j',k'}^{n'-\frac{1}{2}}}{\Delta t} \quad \partial_{x}F|_{i',j',k'}^{n'} \equiv \frac{F_{i'+\frac{1}{2},j',k'}^{n'-1} - F_{i'-\frac{1}{2},j',k'}^{n'}}{\Delta x}$$

$$\partial_{y}F|_{i',j',k'}^{n'} \equiv \frac{F_{i',j'+\frac{1}{2},k'}^{n'} - F_{i',j'-\frac{1}{2},k'}^{n'}}{\Delta y} \quad \partial_{z}F|_{i',j',k'}^{n'} \equiv \frac{F_{i',j',k'+\frac{1}{2}}^{n'} - F_{i',j',k'-\frac{1}{2}}^{n'}}{\Delta z}$$

What happens to div B = 0 and div E= $4\pi\rho$ equations?

- The (discretized) div **B** = 0 and div E= $4\pi\rho$ equations must be satisfied for t=0 (consistent initial condition)
- If div B = 0 is satisfied for t=0, then it remains satisfied at all times as long as B is evolved with the Faraday equation. This remains true when equations are discretized in space and time (provided that div curl = 0)
- If div E=4πρ is satisfied for t=0 then it remains satisfied at all times if continuity equation (div J + ∂ρ/∂t=0) holds
- Unfortunately, using direct charge and current deposition (i.e., J and ρ from numerical particles via shape-functions), the discretized version of the continuity equation is **not satisfied** (div E≠4πρ):

• At each step correct E, namely E'=E-grad[$\delta \phi$], so that div E'=4 $\pi \rho$ $\rightarrow \Delta(\delta \phi) = \text{div } E - 4\pi \rho$ [Boris correction];

Construct J in such a way cont. equation is automatically satisfied [Esirkepov, 2001];

References

LPA physics:

• E. Esarey, C. B. Schroeder, and W. P. Leemans, Rev. Mod. Phys. 81, 1229 (2009)

PIC method:

- C. K. Birdsall and A. B. Langdon, Plasma Physics Via Computer Simulation (Adam-Hilger, 1991)
- J.-L. Vay and R. Lehe, Rev. Accl. Sci. Tech. 09, 165 (2016)
- Haugboelle et al., Physics of Plasmas 20, 062904 (2013)
- T. Esirkepov, Computer Physics Communications, 135(2), 144 (2001)